
Supporting Complex Changes in Evolving Interrelated

Web Databanks

Yannis Stavrakas, George Papastefanatos

Institute for the Management of Information Systems

Athens, Greece

{yannis,gpapas}@imis.athena-innovation.gr

Abstract. In this paper we deal with problems occurring in evolving

interrelated Web databanks. Examples of such databanks are networks of

interlinked scientific repositories on the Web, managed independently by

cooperating research groups. We argue that changes should not be treated solely

as transforming operations, but rather as first class citizens retaining structural,

semantic and temporal characteristics. We propose a graph model called evo-

graph for capturing in a coherent way the inherent relationship between

evolving data and changes applied on them. Evo-graph represents changes as

arbitrarily complex objects, similarly to data objects. We discuss the temporal

characteristics of the evo-graph, and show how the evo-graph can provide past

snapshots of the data. To uniformly express temporal and provenance queries

we introduce evo-path, a path expression language based on XPath. Evo-path

takes advantage of complex changes in the evo-graph in order to answer queries

that interpret and elucidate data evolution.

Keywords: Evolution of semistructured data, change-centric management

1 Introduction

The wide availability and fast publishing of information enabled by the Web unlocked

new potential as well as new problems for data management. Particularly, an

emerging issue concerns collections of Web data (often scientific) that evolve

independently, but remain in some ways interconnected. Those interconnections stem

from the cooperative nature of the teams maintaining the collections. Consider, for

example, biology research communities [2,13], that produce, consume, and archive

rapidly large amounts of data. Scientific communities like that rely increasingly on

the Web for collaboration, through the publication and integration of experimental

and research results. Moreover, scientists in those communities would often like to

review how and why the recorded data have evolved, in order to compare and re-

evaluate previous and current conclusions. Such an activity may require a search that

moves backwards and forwards in time, spreads across various databanks, and

performs complex queries on the semantics of the changes that modified the data. In

those cases, simply revising past document snapshots and differences between

versions may not be enough.

As a simplified example, consider two Web databanks, A and B, maintained by

two biology research teams. Databank A is an authoritative source in miRNAs. A

miRNA is a part of the DNA chain associated with the production of proteins, and is

defined by a start point in the chain and a length. Under certain circumstances

different miRNAs can attach themselves at different points on the DNA chain,

causing important effects. Databank B contains results of experiments and performs

time-consuming calculations for estimating these possible points of attachment for

every miRNA. These points of attachment are called targets. In Fig. 2, databank A

models a miRNA as an ID, a position, and a length, while databank B contains

“predictions” that associate miRNA IDs with possible targets.

Databank B, like many other databanks, relies on databank A to get the most recent

developments. Knowledge on miRNAs advances rapidly, and A changes often to

reflect this. A miRNA in A may change name and properties, split into two distinct

miRNAs, merge with another to form a new miRNA, etc. Other databanks, like B,

have to check the contents of A regularly, and synchronize their contents with those

of A. Research teams will probably need to repeat experiments or calculations in

order to adapt to the new facts exposed in A. Such databanks form a network of

interdependent data that evolve independently. In this network, issues of evolution

and provenance are closely related; evolution information is needed in order to be

able to answer provenance queries, not only within a single databank, but across

many databanks as well. Interdependencies among databanks occur because it is

common practice for scientific databanks to copy information objects from other

scientific databanks.

Until now significant work has been done separately on evolution [5,8,14] and

provenance [4] of XML and semistructured data. Specifically in [4] the issue of

interdependent Web data has been recognized and studied. However, previous

approaches do not cover all the aspects of the problem presented above, since each of

them focuses on the specific questions regarding the framework it addresses. From the

example above it becomes clear that in some cases evolution cannot be studied

separately from provenance.

In this paper we argue that in cooperative systems where evolution and provenance

issues are paramount, changes should not be treated solely as transformation

operations on the data, but rather as first class citizens retaining structural, semantic,

and temporal characteristics. Modeling complex changes explicitly can leverage a

number of new interesting queries, and provide additional semantic information for

interpreting past data. We propose a graph model called evo-graph for capturing in a

coherent way the inherent relationship between evolving data and changes applied on

them. We employ this model for representing simple as well as composite evolution

operations. We discuss in detail the temporal characteristics of the evo-graph, and

show how the evo-graph can provide past snapshots of the data. Finally, we introduce

evo-path, a path expression language for evo-graph that extends XPath. Evo-path

takes advantage of the complex changes in the evo-graph in order to answer queries

about the provenance of data, and the interpretation of data evolution.

The structure of the paper is as follows. In section 2 we discuss related work. In

section 3 we define evo-graph and give an extended example based on databanks A

and B mentioned earlier. In section 4 we present the temporal properties of the evo-

graph, and show how temporal snapshots can be extracted from the evo-graph. In

section 5 we introduce evo-path and give example queries that take advantage of the

complex changes represented in evo-graph. Finally, section 6 concludes the paper.

2 Related Work

Modeling and managing evolving Web data have recently attracted a growing interest

in the database research community. We classify the various approaches as follows.

Change Detection, Versioning and XML Diffs. In one of the early approaches [5],

the authors deal with the representation of changes in semistructured data, and

propose DOEM, an extension of OEM capable of representing changes as annotations

on nodes and edges. They propose a query language, named CHOREL, for retrieving

information related to the history of nodes and edges, exploiting the change

annotations. In [14] a change-centric method for managing versions in XML data is

presented. The authors employ a diff algorithm for detecting changes between two

versions of a document. Changes are represented either as edit scripts, simple deltas

or completed deltas. A similar approach is introduced in [7,8], where instead of deltas

calculations, a referenced-based identification of each object is used across different

versions. New versions hold only the elements that are different from the previous

version whereas a reference is used for pointing to the unchanged elements of past

versions. In [11] the authors propose MXML, a extension of XML that uses context

information to express time and models multifaceted documents. Other approaches,

such as the X-Diff algorithm [19] and [6], focus mainly on the detection and less on

the representation of the changes between two documents. Recently, there are works

that deal with the detection of changes in semantic data, such as [16].

Temporal approaches to evolving data. An annotated bibliography on temporal

and evolution aspects for Web data is presented in [12]. Most temporal approaches

[1,5] enrich data elements with temporal attributes for holding valid and / or

transaction time, and extend query syntax with conditions on the time validity of data

[9]. In [17], a temporal model for XML is introduced, which models an XML

document as a directed graph, and attaches transaction time information at the edges

of the graph. The authors provide techniques for implementing the model with XML,

for indexing temporal documents, and for performing temporal queries. Techniques

for evaluating temporal queries on semistructured data are presented in [10,18]. In

[10] the authors propose a temporal query language for adding valid time support in

XQuery. In [18] the notion of a temporally grouped data model is employed for

uniformly representing and querying successive versions of a document. In a more

recent work [15], the authors extend this technique for publishing the history of a

relational database in XML. The authors introduce the PRIMA system, where they

employ a set of schema modification operators (SMOs) for representing the mappings

between successive schema versions.

Archiving and Provenance in semistructured data. Work on data provenance has

been mainly directed towards relational data. As far as XML and semistructured data

are concerned, the archiving and management of curated databases is addressed in [3].

The authors develop an archiving technique for scientific data that uses timestamps

for each version, whereas all versions are merged into one hierarchy. By identifying

the semantic continuity of elements and merging them into one data structure, this

approach is capable of providing meaningful change descriptions. The authors exploit

the archive to answer certain temporal queries, such as retrieval of any specific

version, and retrieval of the history of an element. In [4] the authors provide a

technique for modeling and recording provenance information in curated databases.

They consider evolution operations that span across multiple databases, such as

copying and pasting data from one database to another.

Compared to the above approaches, ours has the following distinctive

characteristics. First of all, we do not detect changes through diffs, but rather we

assume that changes are introduced in our model as they occur. Changes in our

approach are complex objects operating on data, and exhibit structural, semantic, and

temporal properties: they can be part of other changes, correlate to each other, be

transactional, long-termed or instant. These properties allows our evolution model to

answer queries about “what” has evolved over time, but also to provide information

about “why” and “how” data have evolved. Second of all, temporal information is

assigned to the changes rather than the data, and characterizes the time that a change

occurred. Based on this, the validity timespan of each version of an evolving object is

determined. As a result, temporal conditions can be expressed uniformly in both data

and changes. Third of all, our approach employs the same principles for modeling

evolution events within a single database, as well as capturing interdependencies

between disparate databases. Structuring changes into complex objects enable us to

address provenance and evolution issues in a uniform manner.

3 Modeling Evolution using Complex Changes

In this section we propose evo-graph, a graph model for interrelated evolving data,

where changes are given equal importance as data. We present a set of basic change

operations, we define evo-graph and discuss how it is constructed, and we give an

example of using evo-graph in an extensive biological data scenario.

3.1 Evo-graph: Changes as First-class Citizens

A number of data models have been proposed in the past for semistructured data and

XML [5,21]. In general, those models represent data using labeled rooted directed

graphs, with values on the leaves. In this paper, we assume that Web data are

represented at any given instance by a rooted acyclic graph, called from now on by

the generic name snap-graph (see Fig. 2). A snap-graph consists of data nodes

(complex and atomic), and edges connecting the nodes. In addition to the snap-graph

components, we introduce the following new concepts in evo-graph (see Fig. 3):

 Change nodes are nodes that represent change events: basic change operations, and

complex changes. Change nodes appear as triangles, to distinguish from

conventional circular data nodes.

 Change edges connect a complex change node to the (complex or atomic) change

nodes it consists of. Change edges are represented by dashed lines.

 Evolution edges connect each change node with two data nodes: the object version

before the change and the object version after the change. Evolution edges appear

as thick lines.

The evo-graph is constructed step by step, as changes occur at the current version

of the snap-graph. We will use the following five basic change operations for the

snap-graph:

 create: creates a new child node, and connects it with the parent node.

 add: adds an edge between two existing nodes, effectively adding a child node.

 remove: removes an edge, deleting a child.

 update: updates the value of an atomic node.

 clone: creates a deep copy B of a subtree A, and connects B under the same parent

node as A.

1

update (&2, 10)

at T=1

B

A

update

&1

&2

5

snap-model

T=start

B

A
&1

&3

10

snap-model

T=1

B

&1

&2

5

&4

B

&3

10

evo-model

T=1

remove (&4)

at T=8

B

A
&1

&2

snap-model

T=start
snap-model

T=8

C

&3
D

&4

B

A
&1

&2

C

&3

evo-model

T=8

B

A
&1

&2

C

&3
D

&4

8

update

&6

&5

Fig. 1. Modeling of basic change operation with evo-graph

Our approach is to create a new version of an object in the evo-graph whenever a

change occurs to a child of that object. Each change creates a new change node and a

new evolution edge, connecting the previous version with the new version of the

object. Fig. 1 shows how the basic change operations update and remove are

represented in the evo-graph. Nodes contain their respective node ID, and node labels

are placed next to each node. In the case of remove, when node &4 is removed from

the children of node &2, a new version of node &2 with ID &5 is created in the evo-

graph to reflect this change. As a general rule, changes that affect child nodes create

new versions of the parent nodes. The same holds for update, since the atomic node

&2 can be considered as the parent of an implied “value node”.

The definition of evo-graph follows.

Evo-graph definition. The evo-graph is a finite directed acyclic graph G = (VD,

VC, ED, EC, EE, rD, rC, f
L
, f

V
), such that:

1. Data nodes are divided into complex and atomic: VD = VD
c
 VD

a
.

2. Change nodes are divided into complex and atomic: VC = VC
c
 VC

a
.

3. Data edges depart from every complex data node, ED (VD
c
 VD). Only one data

edge may exist between two nodes.

4. Changes edges depart from every complex change node, EC (VC
c
 VC), with

each vC (VC - rC) having exactly one parent.

5. Evolution edges are directed edges that connect one change node with two data

nodes: EE (VD VC VD). For every change node vC VC there exists in EE an

evolution edge eE = (vD, vC, vD), with f
L
(vD) = f

L
(vD). The following directions are

implied by eE: vD vD , vD vC, and vC vD .

6. rD VD is the data root, with the property that there exists a path formed by data

edges and evolution edges from rD to every other node in VD .

7. rC VC is the change root, with the property that there exists a path formed by

change edges from rC to every other node in VC.

8. f
L
 is a function that assigns labels to nodes, such that:

─ f
L
(x) C if x VC

a
, where C is the set of names of the basic change

operations, and

─ f
L
(x) L if x VC

c
 VD, where L is the set of all other labels.

9. f
V
 is a function that assigns values to nodes, such that:

─ f
V
(x) A if x VD

a
, where A is the set of atomic values, and

─ f
V
(x) T if x VC

a
, where T is the set of timestamps.

The number assigned to each atomic change represents the time instance the

change occurred. We assume a linear time domain and two special time instances:

start, representing the beginning of time, and now, representing the current moment.

The next section presents how those time instances propagate to complex changes and

to the rest of the evo-graph, in order to get temporal snapshots of the data.

Intuitively, the evo-graph consists of two correlated graphs: a data graph, and a tree

of changes. The data graph defines the structure of data, while the change graph

defines the structure of changes on data. These two graphs interconnect by means of

evolution edges, which denote the data object affected by each change. Consequently

there are two roots, the data root and the change root. The change root is assumed to

be always linked to an evolution edge that originates from the version T=start of the

data root, and points to the version T=now of the data root. Moreover, there are two

types of paths: the change paths that follow successive change edges, and the data

paths that follow successive data and / or evolution edges.

miRNA

miRNAs

prediction

predictions

miRNA

ID pos length

&2

&3 &4 &5

&1 &50

&51

Web DataBank A Web DataBank BT=start

... ...

"m1" 9100

&6

ID pos length

&7 &8 &9

"m2" 30110

Fig. 2. State of Web databanks A and B at T=start

The main objective of the evo-graph is to represent arbitrarily complex changes.

The semantics of a complex change is implied by the structure of the change, as

defined by the users of the databank. An atomic change can only represent one of the

basic change operations, however there is no restriction on how atomic changes are

combined to form complex changes. Note that, as long as the set of basic change

operations is complete (operations can lead the snap-graph to any possible state), the

choice of basic change operations is not restricted by the evo-graph: alternative sets

of may be adopted, while the properties of evo-graph remain largely insensitive to

which set is selected.

3.2 Recording Evolution and Databank Interrelations Using Complex

Changes

Based on the example introduced in section 1, in this section we present a simple

scenario which demonstrates how the evo-graph can be used to record dependencies

and changes in two evolving interrelated Web databanks that publish bioscientific

data: databank A, and databank B. Through this example we attempt to establish the

importance of treating complex changes as first class citizens, since they convey

indispensable semantic information for interpreting the evolution of data as well as

the reasons for their current and previous states.

We assume that databank A initially contains only two miRNAs, while databank B

contains a single prediction object without any data yet, as it is depicted in Fig. 2.

miRNA

update

pos-len-update

update

update

pos

length
1

miRNA

miRNA

ID pos

length

&2

&3 &4

&5

&1

...

miRNAs

"m1"

9

100

&6

ID

pos

length

&7

&8

&9

"m2"

30

110

Web DataBank A T=3

&11

&10

19

2

&13

&12

120

length
3

&15

&14

20

&17

&16

miRNAs

m1-lengh-change

&19

&18

Fig. 3. Evo-graph for Web databank A at T=3

Fig. 3 shows the evo-graph for databank A at T=3. For simplicity, the data root and

the change root are omitted. At time instance 1 (T=1) the length of the miRNA with

ID “m1” is updated from 9 to 19. This basic change operation is expressed by the

change node &11 that creates a new version of the length (node &10). For simplicity,

the arguments of change operations are implied and do not appear on the figures.

After this update, “m1” occupies the positions 100 to 119. This, however, causes a

collision with miRNA “m2”, which on T=1 starts at position 110. Therefore, the start

position of “m2” (node &8) must be updated as a consequence of the change occurred

to “m1”. For the sake of the example, we assume that the end position of “m2” at the

DNA chain remains fixed. Therefore, an update of the start position of “m2” must be

followed by an update of its length, so that its end position remains the same. This is

modeled by the complex change pos-len-update that appears in Fig. 3 as node &17.

This complex change creates a new version of the specific miRNA, and consists of

two atomic changes: an update of the start position of “m2” (node &13 introduces

node &12), and an update on the length of “m2” (node &15 introduces node &14).

Change nodes &11 and &17 are further composed into the complex operation m1-

length-change, represented by node &19. This operation is associated with node &1

and causes the creation of a new version of the miRNAs node (node &18). Complex

change nodes can represent relationships between changes that take place in disparate

places of the databank, and would otherwise be treated as unrelated. In this way, it is

possible to model any change operation, like for instance, move, split, merge, etc.

... prediction

predictionprediction

copy

remove

7

cloneadd

prediction

target ID

copycreate

4

predictionprediction

predictions

miRNA

ID
pos length

&2

&3 &4 &5

&1
&50

&51

Web DataBank A Web DataBank B
T=7

... ...

miRNAs

"m1" 19100

&53

&52

&60

&57

"m1"550

target ID

&53

&52

&60

&57

prediction

"m1"
550

&58&55

5 6

...

miRNA

&6

&54 &62

&62

&56 &61&59

Fig. 4. Evo-graph for Web databank B at T=7

Fig. 4 depicts the evo-graph for databank B at T=7. Databank B decides to include

miRNA “m1”, and publish a prediction for its target. At T=4 a new target node is

added under the prediction node in databank B. The new data node (&52) with label

target and value 550 is created by the basic change operation create, which is

represented by the change node &54. Instead of placing node &52 under the existing

prediction node &51, a new version of the prediction node is introduced (&53).

Therefore, the change operation represented by &54 transforms the data node &51 to

the data node &53 by creating the child node &52.

Now that the target data is inserted, the next step is to insert the ID of the miRNA

associated with this target. We assume that the ID in question is copied from databank

A to databank B. It is common practice to copy data among Web databanks, which

leads to a number of issues related to data provenance [4]. The main objective is to

copy data from independently managed databanks, while maintaining evidence of this

transaction.

The copy change operation is a complex operation represented in Fig. 4 by the

change node &62. The change node &62 transforms node &53 to node &60, by

adding the child node &57, which is a copy of the node &3 in databank A. Due to

space limitations, the copy operation is fully presented at the bottom of Fig. 4. It

consists of three basic change operations, add, clone, and remove, that take place at

T=5, T=6, and T=7 respectively. The basic change operation add connects a new

version (&55) of the prediction node to the child node &3 of the databank A (we

assume here a mechanism for referring to nodes residing at disparate sites). The basic

change operation clone creates a (deep) copy of node &3 as node &57. Finally, the

basic change operation remove deletes the edge from node &58 to node &3, leading

to the final version of the prediction node (&60).

Summarizing, this example demonstrates how the evo-graph models evolution

using arbitrarily complex changes, with sub-changes applied to objects that can reside

far from each other in the data graph. It also shows how the same principles can be

used to create and maintain links between disparate databanks, as in the case of

copying and pasting information.

4 Temporal Properties of the Evo-graph

Evo-graph captures in a uniform way multiple data versions along with the evolution

operations applied on each version, and represents them in a coherent graph enriched

with temporal information. A key difference from existing versioning and temporal

approaches on XML and semistructured data is that the time dimension is not

assigned on the data elements of the graph (i.e., data nodes and edges); instead it is

the change nodes that retain and propagate all temporal information on the evo-graph.

A timestamp t is assigned to each atomic change node VC
a, denoting the time on

which this change occurred. Two or more change nodes may have identical

timestamps as long as they correspond to changes that occurred at the same time.

In this section, we present the main mechanisms for propagating time information

from the atomic change nodes towards the rest of the graph elements. Furthermore,

we provide a technique for reducing the evo-graph to the snap-graph that holds under

a given timestamp.

4.1 Propagation of Timespans

As already mentioned, each atomic change node in the evo-graph is assigned a

timestamp denoting the time instance that the change occurred. The timestamp of a

complex change is then considered to be the timestamp of its most “recent” child, and

denotes the time instance the complex change is completed. Thus, timestamps

propagate upwards in the change tree, imposing a partial order on changes. Notice

that different change nodes with the same timestamp are allowed in our model,

implying the concurrent occurrence of the respective changes. In this case, concurrent

change nodes must not belong to the same direct parent, i.e., they cannot be siblings.

Change timestamps determine the validity timespan of data nodes and data edges.

Every change affects the validity timespan of the two data nodes it is connected with

(through the respective evolution edge), in the sense that the previous version of an

object stops being valid the moment a new version is created. Timespans propagate to

child data nodes, since a child can only exist if it has a valid parent.

In what follows we specify the process for obtaining the validity timespans for the

data nodes in the evo-graph. We give two different procedures: one top-to-bottom, for

batch processing the timespans of an evo-graph, and one incremental, for updating the

timespans in the evo-graph after a single modification has taken place. We define

timespans as unions of time intervals of the form [t1..t2) [t3..t4] …, and we use

two special values, start and now, to represent the beginning of time and the current

time, respectively. Note that intervals may be open or closed on the borders,

excluding or including their left / right values.

Top-to-bottom propagation. The top-to-bottom propagation goes through the entire

graph and calculates all the timespans from scratch. It performs a DFS (depth first

search) traversal on the graph starting from data root rD and assuming an initial

timespan [start..now], and assigns a timespan to all nodes and edges. Whenever

encountering a change node, the algorithm propagates the timestamp of the change

node to the data nodes and edges of the graph. The steps of the algorithm are given

below.

─ Step 1. Set as the current node the data root rD

─ Step 2. For each outgoing data edge ei=(rD,xi) ED set T(ei)=T(rD), i.e. the

timespan of each node is propagated to all outgoing edges.

─ Step 3. Set T(xi)= T(xk,xi), i.e. the timespan of a node is equal to the union

of the timespans of all incoming edges, or equivalently as stated in step 2 to the

union of all timespans of its parents.

─ Step 4. If an evolution edge eev=(xi,c,x
’
i) EE exists, then for each outgoing

evolution edge eev=(xi,c,x
’
i) EE with timestamp tc do steps 4a to 4d.

─ Step 4a.The timespan of xi becomes equal to T(xi)=T(xi) [0..tc).

─ Step 4b.The timespan of x’i becomes equal to T(x’i)=T(x
’
i) [tc..now].

─ Step 4c. Consider xi as root and return to step 2, i.e. propagate the new timespan

of xi towards the paths starting from this node.

─ Step 4d. Set xi = x
’
i and repeat step 4, i.e., check if an evolution edge starts

from x’i.

─ Step 5. Else, consider xi as root and return to step 2.

The evo-graph of Fig. 3 is shown with time annotations in Fig. 5.

[s..3)

miRNAs

update

pos-len-update

update

3

3

3

miRNA

update

pos

length
1

miRNAmiRNA

ID pos

length

&2

&3 &4

&5

&1

...

"m1"

9

100

&6

ID

pos

length

&7

&8

&9

"m2"

30

110

Propagation of

timestamps

&11

&10

19

2

&13

&12

120

length
&15

&14

20

&17

&16

miRNAs

m1-lengh-change

&19

&18

[s..n] [s..n]

[s..1) [1..n]

[3..n]

[s..3)

[3..n]

[s..3)
[3..n]

[s..2)
[2..n]

[s..n]

[s..n]

Fig. 5. Time annotated evo-graph of Fig. 3

Incremental propagation. When a new change occurs on a node of the graph, the

timestamp assigned to the new change node affects only the time validity of the

previous and current version of the node sustaining the change. The incremental

propagation adjusts the timespans of these nodes and propagates the new timespans to

their descendants only. Let us assume that an evolution change c with timestamp tc is

applied on node xi with a timespan T(xi), creating a new evolved node x’i and an

evolution edge (xi,c,x
’
i). Then:

─ The timespan of xi becomes T(xi)=T(xi) [0..tc). The timespan is

propagated to all accessible paths, considering xi as root and executing the top-

to-bottom propagation at step 2.

─ The timespan of x’i becomes T(x’i)=T(x
’
i) [tc..now]. Similarly, we

consider x’i as root and propagate the timespan to all accessible paths.

The assignment of timespan to graph elements can be optimized by omitting the

step 4d that propagates downwards the two subtrees, and by retaining the timespans

only for the nodes involved in an evolution edge. For all other nodes, we assume that

they inherit the union of the timespans of their parents.

4.2 Snapshot Reduction of the Evo-graph

The temporal information on the evo-graph allow us to perform a special operation

called snapshot reduction, for extracting the specific version holding under a given

time instance. Snapshot reduction takes as input an evo-graph plus a time instance,

and produces a snap-graph consisting only of those data nodes and data edges for

which their validity timespan contains the given time instance. The algorithm is

presented in Table 1.

Table 1. Snapshot Reduction algorithm

Input: an evo-graph

 G= (VD, VC, ED, EC, EE, rD, rC)

 a requested time instance t

Output:

 a snapshot graph G’=(VD’,ED’)

begin

 VD’ = rD
 get_snapshot(G, G’, t , rD)

end

get_snapshot(G, G’, t , x0)

begin

for each edge(x0,xi) ED {

 if eev=(xi,c,x
’
i) EE exists {

 xi=get_version(G,G’,t,xi)}

 if t T(xi){

 ED’ = ED’ (x0,xi)

 if (xi VD’){

 VD’=VD’ xi
 get_snapshot(G, G’, t , xi)}}

}

End

get_version(G, G’, t , xi)

begin

stack s, list visited

s->put(xi)

while(!s->empty){

 s->pop(xi), visited->add(xi)

 if t T(xi):

 return(xi)

 else:

 for each (xi,c,x
’
i) EE {

 if x
’
i visited:

 s->put(x
’
i)}

}

end

The algorithm starts from the data root and calls the get_snapshot method,

which performs a recursive DFS on the evo-graph. When a data node attached to an

evolution edge is met, an inner DFS traversal (named get_version) is performed

across the successive versions of this node for retrieving the version which is valid for

the requested time instance. The algorithm connects this version with its parent, and

continues the traversal downwards all paths starting from this node.

The resulting snap-graph does not contain any change nodes or evolution edges,

and can be easily transformed to XML format, following a non replicated top-down

traversal [17]. The snap-graph for the time instance T=3 of the evo-graph in Fig. 5 is

shown in Fig. 6.

length

miRNA

poslength

miRNA

ID pos

&2

&3 &4

...

"m1" 100

ID

&7

"m2"

Web DataBank A

Snapshot for T=3

&10

19

&12

120

&14

20

&16

miRNAs&18

Fig. 6. Snap-graph for T=3 of the evo-graph in Fig. 5

5 Introducing Evo-path Expressions

XPath (XML Path Language) [20] is a language proposed by W3C for addressing

portions of a XML document. The basic structural unit of XPath is the XPath

expression, which may return either a node-set, a string, a Boolean, or a number. The

most common kind of XPath expression, which is used in XPath to select nodes or

node-sets in an XML document, is the path expression (or location path expression).

In this section we propose evo-path as an extension of XPath used to navigate

through evo-graphs. Similarly to XPath, evo-path uses path expressions as a sequence

of steps to get from one data node to another data node (or set of data nodes). In

addition to XPath, evo-path uses constructs that allows the navigation through change

nodes, plus predicates that express conditions on the connections between change

nodes and data nodes (conditions on evolution edges).

5.1 Extending XPath for Accommodating Change Path Expressions

There are two kinds of path expressions in evo-paths: data path expressions, and

change path expressions.

Data path expressions start from the data root of the evo-graph and return data

nodes. Similarly to XPath they are written as a sequence of location steps that get

from one node (the current context node) to another node or set of nodes. The location

steps are separated by “/” characters, and have the following syntax [20]:

axis::node_test[pred_1][pred_2]...[pred_n]

Like XPath, in evo-path a predicate consists of an expression enclosed in square

brackets. A predicate serves to filter a sequence, retaining some items and discarding

others. Multiple predicates are allowed. For each item in the input sequence, the

predicate expression is evaluated and a truth value is returned. The items for which

the truth value of the predicate is true are retained, while those for which the predicate

evaluates to false are discarded. Shortcuts can be applied in data path expressions just

like in XPath, as shown by the following two equivalent evo-paths:

/child::A/descendant-or-self::node()/child::B/

 child::*[position()=1]

/A//B/*[1]

Change path expressions start from the change root of the evo-graph and return

change nodes. They have the same syntax as data path expressions, but are enclosed

in square brackets:

</location_step_1/location_step_2/…/location_step_N>

A temporal predicate is introduced in evo-path in order to express temporal

conditions on the evo-graph nodes. The form of the temporal predicate is as follows:

[ts() operator {timespan_1, timespan_2, …, timespan_N}]

where operator is one of the in, contains, meets, and equals. The ts()

evaluates to the timespan of the context node, which is calculated through the process

described in section 4.1. The operators cover the standard operations between sets.

The use of not is allowed in front of any of the operators.

Evolution predicates are used in evo-path to assert the existence of evolution edges

connecting data and change nodes at specific points of the graph. The form of the

evolution predicate is as follows:

[evo-filter data_path_expr | change_path_expr]

The evo-filter can be one of: evo-before(), evo-after(), and evo-

both(). The following examples explain the use of evolution predicates in data path

expressions and change path expressions.

</a/b [evo-both /A/B]>

/A/B [evo-after() <//update>]

The first example returns the change nodes b that are children of the change root a,

but only if they are applied (through an evolution edge) to some data node B, child of

the data root A. The second example returns the data nodes B, children of the data root

A, only if they are the result of an update basic change operation. Note that in case

there exists a sequence of data nodes B connected though consequent evolution edges,

the data path expression /A/B will evaluate to all of these data nodes. The filters

evo-before() and evo-after() retain only those data nodes that are on the

correct side (left and right respectively) of the change specified by the evolution

predicate. On the other hand, evo-both() returns true for the data nodes on both

sides of the evolution edge.

5.2 Evo-path Example Queries

In this section we give a few examples to demonstrate the expressiveness of evo-path

on a number of query categories (in italics). Moreover, we discuss the evaluation of

evo-path expressions against the figures of section 3.2.

 History of a data element (temporal queries). While browsing the current snapshot

of the databank A (see Fig. 6) a bio-scientist named Brian realizes that the length of

the miRNA with ID „m2‟ is not what he expected, and engages in finding out what

has happened and why. He starts by retrieving the previous versions of the data node

&14 (see Fig. 3):

//miRNA [ID=’m2’] /length [ts() not covers {now}]

This is a data path expression that returns the length data nodes of miRNA

objects with ID=’m2’. The temporal predicate ts() evaluates to false for the current

version of length (&14) that holds under now, and true for every other version. The

evo-path returns node &9 in Fig. 3.

Changes applied on data elements (evolution queries). Brian checks the value of

node &9 and wants to learn more about the hows and whys for updating the value 30

of length to the current value 20. He wants to get all the complex changes that

contain the relevant update operation (node &15), and check whether this update

was part of a larger modification within the miRNAs subtree:

<//* [evo-both() //miRNAs//*]

 [.//update [evo-after() //length

 [ts() covers {now}] = 20]]>

The first predicate of the above evo-path returns all the change nodes that are

applied to a miRNAs data node or any of their descendants. On the next lines, the

second predicate dictates that only the changes that have an update descendant

applied on a length object with current value 20 can be returned. The evo-path

returns nodes &19 and &17 of Fig. 3.

Relationships between change elements (causality queries). Realizing that the

update of the length of „m2‟ has something to do with the complex change &19 m1-

length-change, Brian decides to check all the prior versions of the data objects

affected by m1-length-change and its descendant changes.

//* [evo-before() <//m1-length-change//*>]

Not taking the predicate into account, the data path expression evaluates to all the

data nodes in Fig. 3. The evolution predicate evaluates to true only for the data nodes

that are connected through an evolution edge with a m1-length-change change

node (&19) or one of its descendant change nodes (&11, &17, &13, &15). These

nodes are &1, &18, &5, &10, &6, &16, &8, &12, &9, and &14. However, due to

evo-before() in the evolution predicate, only the following nodes are returned as

the result: &1, &5, &6, &8, &9. Brian links the dots and realizes that the updates on

the miRNA „m2‟ are a consequence of the change of the length of „m1‟.

Relationships between disparate data elements (provenance queries). After a while

(say at T=100), Betty, a bio-scientist navigating databank B, comes across the

prediction for the target 550 (node &52 in Fig. 4), which seems interesting. She sees

that this target is attributed to a miRNA with ID „m1‟ (node &57). See looks it up on

a number of sources, but she cannot find anything relevant, because „m1‟ has been

merged some time ago with „m2‟ forming a new miRNA with ID „m1-2‟ (not shown

in the figures). Betty wants to follow back the trace of the node &57, and being aware

of the common practice of copying data between databanks, checks whether node

&57 was copied:

<//clone [evo-after() //prediction[ID=’m1’]]>

The evo-path above returns the change clone whose result was a prediction

data node with an ID child node that has value „m1‟. The node returned is &59, which

stands for the basic change operation clone(&3,&57). The arguments of the clone

basic change operation reveal node &3 as the origin of node &57 (we assume a

mechanism for referring across databanks). Now Betty can follow the evolution of

node &3 in databank A, and see it is now known under another ID.

Summarizing, the modeling of complex changes in evo-graph enables a wide range

of useful queries to be expressed in a uniform way. Building a full-fledged query

language based on evo-paths will allow for much more interesting queries like, for

example, “retrieve the data objects that have been copied from databank A to other

databanks”, that would return node &57 in Fig. 4. Such queries will leverage the

exploration of interdependencies between databanks, and will greatly facilitate the

synchronization between their contents. This will promote the cooperation of

scientific teams, since currently they devote a lot of time for manually monitoring

related databanks and keeping their data updated.

6 Conclusions

In this paper we have argued that treating changes as first class citizens in data

management systems enables a uniform solution to a number of evolution and

provenance issues in collections of interrelated Web data. We proposed evo-graph, a

graph model that represents, in addition to data, arbitrarily complex changes. We

discussed the temporal characteristics of evo-graph, and showed how it can produce

temporal snapshots of the data. We introduced evo-path, an extension of XPath for

navigating and querying evo-graphs. Using throughout the paper a simplified biology-

inspired example, we showed how evo-graph and evo-path can be used in a scenario

that employs evolving scientific data. Summarizing, the paper asserts the potential of

using change objects just like data objects in models and queries.

Future work will be directed towards: (a) building a query language around evo-

path, (b) specifying a language for defining types (templates) for complex changes,

(c) implementing prototype tools, and (d) experimenting and evaluating our approach

in terms of modeling complexity, query language expressiveness, and efficiency.

References

1. T. Amagasa, M. Yoshikawa, S. Uemura. A Data Model for Temporal XML Documents. In

DEXA 2000.

2. A. Bairoch et al. The Universal Protein Resource (UniProt). In Nucleic Acids Research,

2005, Vol. 33, Database issue D154-D159, http://www.uniprot.org/.

3. P. Buneman, S. Khanna, K. Tajima, W.C. Tan. Archiving Scientific Data. In ACM

Transactions on Database Systems, Vol. 20, pp 1-39, 2004.

4. P. Buneman, Α.P. Chapman, J. Cheney. Provenance Management in Curated Databases. In

SIGMOD 2006.

5. S. Chawathe, S. Abiteboul, J. Widom. Managing Historical Semistructured Data. In

Journal of Theory and Practice of Object Systems, Vol. 24(4), pp.1-20, 1999.

6. S. Chawathe, A. Rajaraman, H. Garcia-Molina, J. Widom: Change Detection in

Hierarchically Structured Information. In SIGMOD 1996.

7. S-Y. Chien, V. J. Tsotras, C. Zaniolo, D. Zhang. Storing and Querying Multiversion XML

Documents using Durable Node Numbers. In WISE 2001.

8. S-Y. Chien, V. J. Tsotras, C. Zaniolo. Efficient Management of Multiversion Documents

by Object Referencing. In VLDB 2001: 291-300.

9. C. Dyreson. Observing Transaction-Time Semantics with TTXPath. In WISE 2001.

10. D. Gao, R. T. Snodgrass. Temporal Slicing in the Evaluation of XML Queries. In VLDB

2003.

11. M. Gergatsoulis, Y. Stavrakas. Representing Changes in XML Documents using

Dimensions. In 1st International XML Database Symposium, (XSym 2003).

12. F. Grandi. Introducing an Annotated Bibliography on Temporal and Evolution Aspects in

the World Wide Web. SIGMOD Record 33(2): 84-86 (2004).

13. M. A. Harris et al. The Gene Ontology (GO) database and informatics. In Nucleic Acids

Research, 2004(1), Vol. 32, Database issue D258-61, http://www.geneontology.org/.

14. A. Marian, S. Abiteboul, G. Cobena, L. Mignet. Change-Centric Management of Versions

in an XML Warehouse. In VLDB 2001.

15. H.J. Moon, C. Curino, A. Deutsch, C.Y. Hou, C. Zaniolo. Managing and querying

transaction-time databases under schema evolution. In VLDB' 08, pp. 882-895, 2008.

16. V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos, V. Christophides. On Detecting

High-Level Changes in RDF/S KBs. In ISWC 2009.

17. F. Rizzolo, A. A. Vaisman. Temporal XML: modeling, indexing, and query processing.

VLDB J. 17(5): 1179-1212 (2008).

18. F. Wang, C. Zaniolo. Temporal Queries in XML Document Archives and Web

Warehouses. In TIME 2003: 47-55.

19. Y. Wang, D. J. DeWitt, J. Cai: X-Diff: An Effective Change Detection Algorithm for

XML Documents. In ICDE 2003.

20. W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/, January 2007.

21. W3C. The XML data model. http://www.w3.org/XML/Datamodel.html, August 2005.

