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Abstract. In this paper we deal with problems occurring in evolving 

interrelated Web databanks. Examples of such databanks are networks of 

interlinked scientific repositories on the Web, managed independently by 

cooperating research groups. We argue that changes should not be treated solely 

as transforming operations, but rather as first class citizens retaining structural, 

semantic and temporal characteristics. We propose a graph model called evo-

graph for capturing in a coherent way the inherent relationship between 

evolving data and changes applied on them. Evo-graph represents changes as 

arbitrarily complex objects, similarly to data objects. We discuss the temporal 

characteristics of the evo-graph, and show how the evo-graph can provide past 

snapshots of the data. To uniformly express temporal and provenance queries 

we introduce evo-path, a path expression language based on XPath. Evo-path 

takes advantage of complex changes in the evo-graph in order to answer queries 

that interpret and elucidate data evolution. 
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1 Introduction 

The wide availability and fast publishing of information enabled by the Web unlocked 

new potential as well as new problems for data management. Particularly, an 

emerging issue concerns collections of Web data (often scientific) that evolve 

independently, but remain in some ways interconnected. Those interconnections stem 

from the cooperative nature of the teams maintaining the collections. Consider, for 

example, biology research communities [2,13], that produce, consume, and archive 

rapidly large amounts of data. Scientific communities like that rely increasingly on 

the Web for collaboration, through the publication and integration of experimental 

and research results. Moreover, scientists in those communities would often like to 

review how and why the recorded data have evolved, in order to compare and re-

evaluate previous and current conclusions. Such an activity may require a search that 

moves backwards and forwards in time, spreads across various databanks, and 

performs complex queries on the semantics of the changes that modified the data. In 



those cases, simply revising past document snapshots and differences between 

versions may not be enough.  

As a simplified example, consider two Web databanks, A and B, maintained by 

two biology research teams. Databank A is an authoritative source in miRNAs. A 

miRNA is a part of the DNA chain associated with the production of proteins, and is 

defined by a start point in the chain and a length. Under certain circumstances 

different miRNAs can attach themselves at different points on the DNA chain, 

causing important effects. Databank B contains results of experiments and performs 

time-consuming calculations for estimating these possible points of attachment for 

every miRNA. These points of attachment are called targets. In Fig. 2, databank A 

models a miRNA as an ID, a position, and a length, while databank B contains 

“predictions” that associate miRNA IDs with possible targets. 

Databank B, like many other databanks, relies on databank A to get the most recent 

developments. Knowledge on miRNAs advances rapidly, and A changes often to 

reflect this. A miRNA in A may change name and properties, split into two distinct 

miRNAs, merge with another to form a new miRNA, etc. Other databanks, like B, 

have to check the contents of A regularly, and synchronize their contents with those 

of A. Research teams will probably need to repeat experiments or calculations in 

order to adapt to the new facts exposed in A. Such databanks form a network of 

interdependent data that evolve independently. In this network, issues of evolution 

and provenance are closely related; evolution information is needed in order to be 

able to answer provenance queries, not only within a single databank, but across 

many databanks as well. Interdependencies among databanks occur because it is 

common practice for scientific databanks to copy information objects from other 

scientific databanks. 

Until now significant work has been done separately on evolution [5,8,14] and 

provenance [4] of XML and semistructured data. Specifically in [4] the issue of 

interdependent Web data has been recognized and studied. However, previous 

approaches do not cover all the aspects of the problem presented above, since each of 

them focuses on the specific questions regarding the framework it addresses. From the 

example above it becomes clear that in some cases evolution cannot be studied 

separately from provenance. 

In this paper we argue that in cooperative systems where evolution and provenance 

issues are paramount, changes should not be treated solely as transformation 

operations on the data, but rather as first class citizens retaining structural, semantic, 

and temporal characteristics. Modeling complex changes explicitly can leverage a 

number of new interesting queries, and provide additional semantic information for 

interpreting past data. We propose a graph model called evo-graph for capturing in a 

coherent way the inherent relationship between evolving data and changes applied on 

them. We employ this model for representing simple as well as composite evolution 

operations. We discuss in detail the temporal characteristics of the evo-graph, and 

show how the evo-graph can provide past snapshots of the data. Finally, we introduce 

evo-path, a path expression language for evo-graph that extends XPath. Evo-path 

takes advantage of the complex changes in the evo-graph in order to answer queries 

about the provenance of data, and the interpretation of data evolution. 



The structure of the paper is as follows. In section 2 we discuss related work. In 

section 3 we define evo-graph and give an extended example based on databanks A 

and B mentioned earlier. In section 4 we present the temporal properties of the evo-

graph, and show how temporal snapshots can be extracted from the evo-graph. In 

section 5 we introduce evo-path and give example queries that take advantage of the 

complex changes represented in evo-graph. Finally, section 6 concludes the paper. 

2 Related Work 

Modeling and managing evolving Web data have recently attracted a growing interest 

in the database research community. We classify the various approaches as follows. 

Change Detection, Versioning and XML Diffs. In one of the early approaches [5], 

the authors deal with the representation of changes in semistructured data, and 

propose DOEM, an extension of OEM capable of representing changes as annotations 

on nodes and edges. They propose a query language, named CHOREL, for retrieving 

information related to the history of nodes and edges, exploiting the change 

annotations. In [14] a change-centric method for managing versions in XML data is 

presented. The authors employ a diff algorithm for detecting changes between two 

versions of a document. Changes are represented either as edit scripts, simple deltas 

or completed deltas. A similar approach is introduced in [7,8], where instead of deltas 

calculations, a referenced-based identification of each object is used across different 

versions. New versions hold only the elements that are different from the previous 

version whereas a reference is used for pointing to the unchanged elements of past 

versions. In [11] the authors propose MXML, a extension of XML that uses context 

information to express time and models multifaceted documents. Other approaches, 

such as the X-Diff algorithm [19] and [6], focus mainly on the detection and less on 

the representation of the changes between two documents. Recently, there are works 

that deal with the detection of changes in semantic data, such as [16]. 

Temporal approaches to evolving data. An annotated bibliography on temporal 

and evolution aspects for Web data is presented in [12]. Most temporal approaches 

[1,5] enrich data elements with temporal attributes for holding valid and / or 

transaction time, and extend query syntax with conditions on the time validity of data 

[9]. In [17], a temporal model for XML is introduced, which models an XML 

document as a directed graph, and attaches transaction time information at the edges 

of the graph. The authors provide techniques for implementing the model with XML, 

for indexing temporal documents, and for performing temporal queries. Techniques 

for evaluating temporal queries on semistructured data are presented in [10,18]. In 

[10] the authors propose a temporal query language for adding valid time support in 

XQuery. In [18] the notion of a temporally grouped data model is employed for 

uniformly representing and querying successive versions of a document. In a more 

recent work [15], the authors extend this technique for publishing the history of a 

relational database in XML. The authors introduce the PRIMA system, where they 

employ a set of schema modification operators (SMOs) for representing the mappings 

between successive schema versions. 



Archiving and Provenance in semistructured data. Work on data provenance has 

been mainly directed towards relational data. As far as XML and semistructured data 

are concerned, the archiving and management of curated databases is addressed in [3]. 

The authors develop an archiving technique for scientific data that uses timestamps 

for each version, whereas all versions are merged into one hierarchy. By identifying 

the semantic continuity of elements and merging them into one data structure, this 

approach is capable of providing meaningful change descriptions. The authors exploit 

the archive to answer certain temporal queries, such as retrieval of any specific 

version, and retrieval of the history of an element. In [4] the authors provide a 

technique for modeling and recording provenance information in curated databases. 

They consider evolution operations that span across multiple databases, such as 

copying and pasting data from one database to another. 

Compared to the above approaches, ours has the following distinctive 

characteristics. First of all, we do not detect changes through diffs, but rather we 

assume that changes are introduced in our model as they occur. Changes in our 

approach are complex objects operating on data, and exhibit structural, semantic, and 

temporal properties: they can be part of other changes, correlate to each other, be 

transactional, long-termed or instant. These properties allows our evolution model to 

answer queries about “what” has evolved over time, but also to provide information 

about “why” and “how” data have evolved. Second of all, temporal information is 

assigned to the changes rather than the data, and characterizes the time that a change 

occurred. Based on this, the validity timespan of each version of an evolving object is 

determined. As a result, temporal conditions can be expressed uniformly in both data 

and changes. Third of all, our approach employs the same principles for modeling 

evolution events within a single database, as well as capturing interdependencies 

between disparate databases. Structuring changes into complex objects enable us to 

address provenance and evolution issues in a uniform manner. 

3 Modeling Evolution using Complex Changes 

In this section we propose evo-graph, a graph model for interrelated evolving data, 

where changes are given equal importance as data. We present a set of basic change 

operations, we define evo-graph and discuss how it is constructed, and we give an 

example of using evo-graph in an extensive biological data scenario. 

3.1 Evo-graph: Changes as First-class Citizens 

A number of data models have been proposed in the past for semistructured data and 

XML [5,21]. In general, those models represent data using labeled rooted directed 

graphs, with values on the leaves. In this paper, we assume that Web data are 

represented at any given instance by a rooted acyclic graph, called from now on by 

the generic name snap-graph (see Fig. 2). A snap-graph consists of data nodes 

(complex and atomic), and edges connecting the nodes. In addition to the snap-graph 

components, we introduce the following new concepts in evo-graph (see Fig. 3): 



 Change nodes are nodes that represent change events: basic change operations, and 

complex changes. Change nodes appear as triangles, to distinguish from 

conventional circular data nodes. 

 Change edges connect a complex change node to the (complex or atomic) change 

nodes it consists of. Change edges are represented by dashed lines. 

 Evolution edges connect each change node with two data nodes: the object version 

before the change and the object version after the change. Evolution edges appear 

as thick lines. 

The evo-graph is constructed step by step, as changes occur at the current version 

of the snap-graph. We will use the following five basic change operations for the 

snap-graph:  

 create: creates a new child node, and connects it with the parent node. 

 add: adds an edge between two existing nodes, effectively adding a child node.  

 remove: removes an edge, deleting a child. 

 update: updates the value of an atomic node. 

 clone: creates a deep copy B of a subtree A, and connects B under the same parent 

node as A. 
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Fig. 1. Modeling of basic change operation with evo-graph 

Our approach is to create a new version of an object in the evo-graph whenever a 

change occurs to a child of that object. Each change creates a new change node and a 



new evolution edge, connecting the previous version with the new version of the 

object. Fig. 1 shows how the basic change operations update and remove are 

represented in the evo-graph. Nodes contain their respective node ID, and node labels 

are placed next to each node. In the case of remove, when node &4 is removed from 

the children of node &2, a new version of node &2 with ID &5 is created in the evo-

graph to reflect this change. As a general rule, changes that affect child nodes create 

new versions of the parent nodes. The same holds for update, since the atomic node 

&2 can be considered as the parent of an implied “value node”. 

The definition of evo-graph follows. 

Evo-graph definition. The evo-graph is a finite directed acyclic graph G = (VD, 

VC, ED, EC, EE, rD, rC, f
L
, f

V
), such that: 

1. Data nodes are divided into complex and atomic: VD = VD
c
  VD

a
. 

2. Change nodes are divided into complex and atomic: VC = VC
c
  VC

a
. 

3. Data edges depart from every complex data node, ED  (VD
c
  VD). Only one data 

edge may exist between two nodes. 

4. Changes edges depart from every complex change node, EC  (VC
c
  VC), with 

each vC  (VC - rC) having exactly one parent. 

5. Evolution edges are directed edges that connect one change node with two data 

nodes: EE  (VD  VC  VD). For every change node vC  VC there exists in EE an 

evolution edge eE = (vD, vC, vD ), with f
L
(vD) = f

L
(vD ). The following directions are 

implied by eE: vD  vD , vD  vC, and vC  vD . 

6. rD  VD is the data root, with the property that there exists a path formed by data 

edges and evolution edges from rD to every other node in VD . 

7. rC  VC is the change root, with the property that there exists a path formed by 

change edges from rC to every other node in VC. 

8. f
L
 is a function that assigns labels to nodes, such that: 

─ f
L
(x)  C if x  VC

a
, where C is the set of names of the basic change 

operations, and 

─ f
L
(x)  L if x  VC

c
  VD, where L is the set of all other labels. 

9. f
V
 is a function that assigns values to nodes, such that: 

─ f
V
(x)  A if x  VD

a
, where A is the set of atomic values, and 

─ f
V
(x)  T if x  VC

a
, where T is the set of timestamps. 

The number assigned to each atomic change represents the time instance the 

change occurred. We assume a linear time domain and two special time instances: 

start, representing the beginning of time, and now, representing the current moment. 

The next section presents how those time instances propagate to complex changes and 

to the rest of the evo-graph, in order to get temporal snapshots of the data. 

Intuitively, the evo-graph consists of two correlated graphs: a data graph, and a tree 

of changes. The data graph defines the structure of data, while the change graph 

defines the structure of changes on data. These two graphs interconnect by means of 

evolution edges, which denote the data object affected by each change. Consequently 

there are two roots, the data root and the change root. The change root is assumed to 



be always linked to an evolution edge that originates from the version T=start of the 

data root, and points to the version T=now of the data root. Moreover, there are two 

types of paths: the change paths that follow successive change edges, and the data 

paths that follow successive data and / or evolution edges. 
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Fig. 2. State of Web databanks A and B at T=start 

The main objective of the evo-graph is to represent arbitrarily complex changes. 

The semantics of a complex change is implied by the structure of the change, as 

defined by the users of the databank. An atomic change can only represent one of the 

basic change operations, however there is no restriction on how atomic changes are 

combined to form complex changes. Note that, as long as the set of basic change 

operations is complete (operations can lead the snap-graph to any possible state), the 

choice of basic change operations is not restricted by the evo-graph: alternative sets 

of may be adopted, while the properties of evo-graph remain largely insensitive to 

which set is selected. 

3.2 Recording Evolution and Databank Interrelations Using Complex 

Changes 

Based on the example introduced in section 1, in this section we present a simple 

scenario which demonstrates how the evo-graph can be used to record dependencies 

and changes in two evolving interrelated Web databanks that publish bioscientific 

data: databank A, and databank B. Through this example we attempt to establish the 

importance of treating complex changes as first class citizens, since they convey 

indispensable semantic information for interpreting the evolution of data as well as 

the reasons for their current and previous states. 



We assume that databank A initially contains only two miRNAs, while databank B 

contains a single prediction object without any data yet, as it is depicted in Fig. 2. 
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Fig. 3. Evo-graph for Web databank A at T=3 

Fig. 3 shows the evo-graph for databank A at T=3. For simplicity, the data root and 

the change root are omitted. At time instance 1 (T=1) the length of the miRNA with 

ID “m1” is updated from 9 to 19. This basic change operation is expressed by the 

change node &11 that creates a new version of the length (node &10). For simplicity, 

the arguments of change operations are implied and do not appear on the figures. 

After this update, “m1” occupies the positions 100 to 119. This, however, causes a 

collision with miRNA “m2”, which on T=1 starts at position 110. Therefore, the start 

position of “m2” (node &8) must be updated as a consequence of the change occurred 

to “m1”. For the sake of the example, we assume that the end position of “m2” at the 

DNA chain remains fixed. Therefore, an update of the start position of “m2” must be 

followed by an update of its length, so that its end position remains the same. This is 

modeled by the complex change pos-len-update that appears in Fig. 3 as node &17. 

This complex change creates a new version of the specific miRNA, and consists of 

two atomic changes: an update of the start position of “m2” (node &13 introduces 

node &12), and an update on the length of “m2” (node &15 introduces node &14). 



Change nodes &11 and &17 are further composed into the complex operation m1-

length-change, represented by node &19. This operation is associated with node &1 

and causes the creation of a new version of the miRNAs node (node  &18). Complex 

change nodes can represent relationships between changes that take place in disparate 

places of the databank, and would otherwise be treated as unrelated. In this way, it is 

possible to model any change operation, like for instance, move, split, merge, etc. 
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Fig. 4. Evo-graph for Web databank B at T=7 

Fig. 4 depicts the evo-graph for databank B at T=7. Databank B decides to include 

miRNA “m1”, and publish a prediction for its target. At T=4 a new target node is 

added under the prediction node in databank B. The new data node (&52) with label 



target and value 550 is created by the basic change operation create, which is 

represented by the change node &54. Instead of placing node &52 under the existing 

prediction node &51, a new version of the prediction node is introduced (&53). 

Therefore, the change operation represented by &54 transforms the data node &51 to 

the data node &53 by creating the child node &52. 

Now that the target data is inserted, the next step is to insert the ID of the miRNA 

associated with this target. We assume that the ID in question is copied from databank 

A to databank B. It is common practice to copy data among Web databanks, which 

leads to a number of issues related to data provenance [4]. The main objective is to 

copy data from independently managed databanks, while maintaining evidence of this 

transaction. 

The copy change operation is a complex operation represented in Fig. 4 by the 

change node &62. The change node &62 transforms node &53 to node &60, by 

adding the child node &57, which is a copy of the node &3 in databank A. Due to 

space limitations, the copy operation is fully presented at the bottom of Fig. 4. It 

consists of three basic change operations, add, clone, and remove, that take place at 

T=5, T=6, and T=7 respectively. The basic change operation add connects a new 

version (&55) of the prediction node to the child node &3 of the databank A (we 

assume here a mechanism for referring to nodes residing at disparate sites). The basic 

change operation clone creates a (deep) copy of node &3 as node &57. Finally, the 

basic change operation remove deletes the edge from node &58 to node &3, leading 

to the final version of the prediction node (&60). 

Summarizing, this example demonstrates how the evo-graph models evolution 

using arbitrarily complex changes, with sub-changes applied to objects that can reside 

far from each other in the data graph. It also shows how the same principles can be 

used to create and maintain links between disparate databanks, as in the case of 

copying and pasting information. 

4 Temporal Properties of the Evo-graph 

Evo-graph captures in a uniform way multiple data versions along with the evolution 

operations applied on each version, and represents them in a coherent graph enriched 

with temporal information. A key difference from existing versioning and temporal 

approaches on XML and semistructured data is that the time dimension is not 

assigned on the data elements of the graph (i.e., data nodes and edges); instead it is 

the change nodes that retain and propagate all temporal information on the evo-graph. 

A timestamp t is assigned to each atomic change node VC
a, denoting the time on 

which this change occurred. Two or more change nodes may have identical 

timestamps as long as they correspond to changes that occurred at the same time. 

In this section, we present the main mechanisms for propagating time information 

from the atomic change nodes towards the rest of the graph elements. Furthermore, 

we provide a technique for reducing the evo-graph to the snap-graph that holds under 

a given timestamp. 



4.1 Propagation of Timespans 

As already mentioned, each atomic change node in the evo-graph is assigned a 

timestamp denoting the time instance that the change occurred. The timestamp of a 

complex change is then considered to be the timestamp of its most “recent” child, and 

denotes the time instance the complex change is completed. Thus, timestamps 

propagate upwards in the change tree, imposing a partial order on changes. Notice 

that different change nodes with the same timestamp are allowed in our model, 

implying the concurrent occurrence of the respective changes. In this case, concurrent 

change nodes must not belong to the same direct parent, i.e., they cannot be siblings. 

Change timestamps determine the validity timespan of data nodes and data edges. 

Every change affects the validity timespan of the two data nodes it is connected with 

(through the respective evolution edge), in the sense that the previous version of an 

object stops being valid the moment a new version is created. Timespans propagate to 

child data nodes, since a child can only exist if it has a valid parent. 

In what follows we specify the process for obtaining the validity timespans for the 

data nodes in the evo-graph. We give two different procedures: one top-to-bottom, for 

batch processing the timespans of an evo-graph, and one incremental, for updating the 

timespans in the evo-graph after a single modification has taken place. We define 

timespans as unions of time intervals of the form [t1..t2)  [t3..t4]  …, and we use 

two special values, start and now, to represent the beginning of time and the current 

time, respectively. Note that intervals may be open or closed on the borders, 

excluding or including their left / right values. 

Top-to-bottom propagation. The top-to-bottom propagation goes through the entire 

graph and calculates all the timespans from scratch. It performs a DFS (depth first 

search) traversal on the graph starting from data root rD and assuming an initial 

timespan [start..now], and assigns a timespan to all nodes and edges. Whenever 

encountering a change node, the algorithm propagates the timestamp of the change 

node to the data nodes and edges of the graph. The steps of the algorithm are given 

below. 

─ Step 1. Set as the current node the data root rD 

─ Step 2. For each outgoing data edge ei=(rD,xi) ED set T(ei)=T(rD), i.e. the 

timespan of each node is propagated to all outgoing edges. 

─ Step 3. Set T(xi)= T(xk,xi), i.e. the timespan of a node is equal to the union 

of the timespans of all incoming edges, or equivalently as stated in step 2 to the 

union of all timespans of its parents. 

─ Step 4. If an evolution edge eev=(xi,c,x
’
i) EE exists, then for each outgoing 

evolution edge eev=(xi,c,x
’
i) EE with timestamp tc do steps 4a to 4d. 

─ Step 4a.The timespan of xi becomes equal to T(xi)=T(xi) [0..tc).  

─ Step 4b.The timespan of x’i becomes equal to T(x’i)=T(x
’
i) [tc..now]. 

─ Step 4c. Consider xi as root and return to step 2, i.e. propagate the new timespan 

of xi towards the paths starting from this node. 

─ Step 4d. Set xi = x
’
i and repeat step 4, i.e., check if an evolution edge starts 

from x’i. 

─ Step 5. Else, consider xi as root and return to step 2. 



The evo-graph of Fig. 3 is shown with time annotations in Fig. 5. 
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Fig. 5. Time annotated evo-graph of Fig. 3 

Incremental propagation. When a new change occurs on a node of the graph, the 

timestamp assigned to the new change node affects only the time validity of the 

previous and current version of the node sustaining the change. The incremental 

propagation adjusts the timespans of these nodes and propagates the new timespans to 

their descendants only. Let us assume that an evolution change c with timestamp tc is 

applied on node xi with a timespan T(xi), creating a new evolved node x’i and an 

evolution edge (xi,c,x
’
i). Then: 

─ The timespan of xi becomes T(xi)=T(xi) [0..tc). The timespan is 

propagated to all accessible paths, considering xi as root and executing the top-

to-bottom propagation at step 2. 

─ The timespan of x’i becomes T(x’i)=T(x
’
i) [tc..now]. Similarly, we 

consider x’i as root and propagate the timespan to all accessible paths. 

The assignment of timespan to graph elements can be optimized by omitting the 

step 4d that propagates downwards the two subtrees, and by retaining the timespans 

only for the nodes involved in an evolution edge. For all other nodes, we assume that 

they inherit the union of the timespans of their parents. 



4.2 Snapshot Reduction of the Evo-graph 

The temporal information on the evo-graph allow us to perform a special operation 

called snapshot reduction, for extracting the specific version holding under a given 

time instance. Snapshot reduction takes as input an evo-graph plus a time instance, 

and produces a snap-graph consisting only of those data nodes and data edges for 

which their validity timespan contains the given time instance. The algorithm is 

presented in Table 1.  

Table 1. Snapshot Reduction algorithm 

Input: an evo-graph 

   G= (VD, VC, ED, EC, EE, rD, rC) 

   a requested time instance t 

Output:  

   a snapshot graph G’=(VD’,ED’) 

begin 

   VD’ = rD 
   get_snapshot(G, G’, t , rD) 

end 

get_snapshot(G, G’, t , x0) 

begin 

for each edge(x0,xi) ED { 

  if eev=(xi,c,x
’
i) EE exists { 

    xi=get_version(G,G’,t,xi)} 

  if t T(xi){ 

      ED’ = ED’ (x0,xi) 

     if (xi VD’){ 

       VD’=VD’ xi 
       get_snapshot(G, G’, t , xi)}} 

} 

End 

get_version(G, G’, t , xi) 

begin 

stack s, list visited 

s->put(xi) 

while(!s->empty){ 

  s->pop(xi), visited->add(xi) 

  if t T(xi): 

    return(xi) 

  else: 

    for each (xi,c,x
’
i) EE { 

      if x
’
i  visited:  

        s->put(x
’
i)} 

} 

end 

 

 

The algorithm starts from the data root and calls the get_snapshot method, 

which performs a recursive DFS on the evo-graph. When a data node attached to an 

evolution edge is met, an inner DFS traversal (named get_version) is performed 

across the successive versions of this node for retrieving the version which is valid for 

the requested time instance. The algorithm connects this version with its parent, and 

continues the traversal downwards all paths starting from this node. 

The resulting snap-graph does not contain any change nodes or evolution edges, 

and can be easily transformed to XML format, following a non replicated top-down 

traversal [17]. The snap-graph for the time instance T=3 of the evo-graph in Fig. 5 is 

shown in Fig. 6. 
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Fig. 6. Snap-graph for T=3 of the evo-graph in Fig. 5 

5 Introducing Evo-path Expressions 

XPath (XML Path Language) [20] is a language proposed by W3C for addressing 

portions of a XML document. The basic structural unit of XPath is the XPath 

expression, which may return either a node-set, a string, a Boolean, or a number. The 

most common kind of XPath expression, which is used in XPath to select nodes or 

node-sets in an XML document, is the path expression (or location path expression). 

In this section we propose evo-path as an extension of XPath used to navigate 

through evo-graphs. Similarly to XPath, evo-path uses path expressions as a sequence 

of steps to get from one data node to another data node (or set of data nodes). In 

addition to XPath, evo-path uses constructs that allows the navigation through change 

nodes, plus predicates that express conditions on the connections between change 

nodes and data nodes (conditions on evolution edges).  

5.1 Extending XPath for Accommodating Change Path Expressions 

There are two kinds of path expressions in evo-paths: data path expressions, and 

change path expressions. 

Data path expressions start from the data root of the evo-graph and return data 

nodes. Similarly to XPath they are written as a sequence of location steps that get 

from one node (the current context node) to another node or set of nodes. The location 

steps are separated by “/” characters, and have the following syntax [20]: 

axis::node_test[pred_1][pred_2]...[pred_n] 



Like XPath, in evo-path a predicate consists of an expression enclosed in square 

brackets. A predicate serves to filter a sequence, retaining some items and discarding 

others. Multiple predicates are allowed. For each item in the input sequence, the 

predicate expression is evaluated and a truth value is returned. The items for which 

the truth value of the predicate is true are retained, while those for which the predicate 

evaluates to false are discarded. Shortcuts can be applied in data path expressions just 

like in XPath, as shown by the following two equivalent evo-paths: 

/child::A/descendant-or-self::node()/child::B/ 

                child::*[position()=1] 

/A//B/*[1] 

Change path expressions start from the change root of the evo-graph and return 

change nodes. They have the same syntax as data path expressions, but are enclosed 

in square brackets: 

</location_step_1/location_step_2/…/location_step_N> 

A temporal predicate is introduced in evo-path in order to express temporal 

conditions on the evo-graph nodes. The form of the temporal predicate is as follows: 

[ts() operator {timespan_1, timespan_2, …, timespan_N}] 

where operator is one of the in, contains, meets, and equals. The ts() 

evaluates to the timespan of the context node, which is calculated through the process 

described in section 4.1. The operators cover the standard operations between sets. 

The use of not is allowed in front of any of the operators. 

Evolution predicates are used in evo-path to assert the existence of evolution edges 

connecting data and change nodes at specific points of the graph. The form of the 

evolution predicate is as follows: 

[evo-filter data_path_expr | change_path_expr] 

The evo-filter can be one of: evo-before(), evo-after(), and evo-

both(). The following examples explain the use of evolution predicates in data path 

expressions and change path expressions. 

</a/b [evo-both /A/B]> 

/A/B [evo-after() <//update>]  

The first example returns the change nodes b that are children of the change root a, 

but only if they are applied (through an evolution edge) to some data node B, child of 

the data root A. The second example returns the data nodes B, children of the data root 

A, only if they are the result of an update basic change operation. Note that in case 

there exists a sequence of data nodes B connected though consequent evolution edges, 

the data path expression /A/B will evaluate to all of these data nodes. The filters 

evo-before() and evo-after() retain only those data nodes that are on the 

correct side (left and right respectively) of the change specified by the evolution 

predicate. On the other hand, evo-both() returns true for the data nodes on both 

sides of the evolution edge. 



5.2 Evo-path Example Queries 

In this section we give a few examples to demonstrate the expressiveness of evo-path 

on a number of query categories (in italics). Moreover, we discuss the evaluation of 

evo-path expressions against the figures of section 3.2. 

 History of a data element (temporal queries). While browsing the current snapshot 

of the databank A (see Fig. 6) a bio-scientist named Brian realizes that the length of 

the miRNA with ID „m2‟ is not what he expected, and engages in finding out what 

has happened and why. He starts by retrieving the previous versions of the data node 

&14 (see Fig. 3): 

//miRNA [ID=’m2’] /length [ts() not covers {now}] 

This is a data path expression that returns the length data nodes of miRNA 

objects with ID=’m2’. The temporal predicate ts() evaluates to false for the current 

version of length (&14) that holds under now, and true for every other version. The 

evo-path returns node &9 in Fig. 3. 

Changes applied on data elements (evolution queries). Brian checks the value of 

node &9 and wants to learn more about the hows and whys for updating the value 30 

of length to the current value 20. He wants to get all the complex changes that 

contain the relevant update operation (node &15), and check whether this update 

was part of a larger modification within the miRNAs subtree: 

<//* [evo-both() //miRNAs//*]  

     [.//update [evo-after() //length  

                       [ts() covers {now}] = 20]]> 

The first predicate of the above evo-path returns all the change nodes that are 

applied to a miRNAs data node or any of their descendants. On the next lines, the 

second predicate dictates that only the changes that have an update descendant 

applied on a length object with current value 20 can be returned. The evo-path 

returns nodes &19 and &17 of Fig. 3. 

Relationships between change elements (causality queries). Realizing that the 

update of the length of „m2‟ has something to do with the complex change &19 m1-

length-change, Brian decides to check all the prior versions of the data objects 

affected by m1-length-change and its descendant changes. 

//* [evo-before() <//m1-length-change//*>] 

Not taking the predicate into account, the data path expression evaluates to all the 

data nodes in Fig. 3. The evolution predicate evaluates to true only for the data nodes 

that are connected through an evolution edge with a m1-length-change change 

node (&19) or one of its descendant change nodes (&11, &17, &13, &15). These 

nodes are &1, &18, &5, &10, &6, &16, &8, &12, &9, and &14. However, due to 

evo-before() in the evolution predicate, only the following nodes are returned as 

the result: &1, &5, &6, &8, &9. Brian links the dots and realizes that the updates on 

the miRNA „m2‟ are a consequence of the change of the length of „m1‟. 



Relationships between disparate data elements (provenance queries). After a while 

(say at T=100), Betty, a bio-scientist navigating databank B, comes across the 

prediction for the target 550 (node &52 in Fig. 4), which seems interesting. She sees 

that this target is attributed to a miRNA with ID „m1‟ (node &57). See looks it up on 

a number of sources, but she cannot find anything relevant, because „m1‟ has been 

merged some time ago with „m2‟ forming a new miRNA with ID „m1-2‟ (not shown 

in the figures). Betty wants to follow back the trace of the node &57, and being aware 

of the common practice of copying data between databanks, checks whether node 

&57 was copied: 

<//clone [evo-after() //prediction[ID=’m1’]]> 

The evo-path above returns the change clone whose result was a prediction 

data node with an ID child node that has value „m1‟. The node returned is &59, which 

stands for the basic change operation clone(&3,&57). The arguments of the clone 

basic change operation reveal node &3 as the origin of node &57 (we assume a 

mechanism for referring across databanks). Now Betty can follow the evolution of 

node &3 in databank A, and see it is now known under another ID. 

Summarizing, the modeling of complex changes in evo-graph enables a wide range 

of useful queries to be expressed in a uniform way. Building a full-fledged query 

language based on evo-paths will allow for much more interesting queries like, for 

example, “retrieve the data objects that have been copied from databank A to other 

databanks”, that would return node &57 in Fig. 4. Such queries will leverage the 

exploration of interdependencies between databanks, and will greatly facilitate the 

synchronization between their contents. This will promote the cooperation of 

scientific teams, since currently they devote a lot of time for manually monitoring 

related databanks and keeping their data updated. 

6 Conclusions 

In this paper we have argued that treating changes as first class citizens in data 

management systems enables a uniform solution to a number of evolution and 

provenance issues in collections of interrelated Web data. We proposed evo-graph, a 

graph model that represents, in addition to data, arbitrarily complex changes. We 

discussed the temporal characteristics of evo-graph, and showed how it can produce 

temporal snapshots of the data. We introduced evo-path, an extension of XPath for 

navigating and querying evo-graphs. Using throughout the paper a simplified biology-

inspired example, we showed how evo-graph and evo-path can be used in a scenario 

that employs evolving scientific data. Summarizing, the paper asserts the potential of 

using change objects just like data objects in models and queries. 

Future work will be directed towards: (a) building a query language around evo-

path, (b) specifying a language for defining types (templates) for complex changes, 

(c) implementing prototype tools, and (d) experimenting and evaluating our approach 

in terms of modeling complexity, query language expressiveness, and efficiency. 
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