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In-Memory Interval Joins

Panagiotis Bouros · Nikos Mamoulis · Dimitris Tsitsigkos · Manolis

Terrovitis

Abstract The interval join is a popular operation in

temporal, spatial, and uncertain databases. The major-

ity of interval join algorithms assume that input data

reside on disk and so, their focus is to minimize the

I/O accesses. Recently, an in-memory approach based

on plane sweep (PS) for modern hardware was proposed

which greatly outperforms previous work. However, this

approach relies on a complex data structure and its par-

allelization has not been adequately studied. In this ar-

ticle, we investigate in-memory interval joins in two di-

rections. First, we explore the applicability of a largely

ignored forward scan (FS) based plane sweep algorithm,

for single-threaded join evaluation. We propose four op-

timizations for FS that greatly reduce its cost, making

it competitive or even faster than the state-of-the-art.

Second, we study in depth the parallel computation of

interval joins. We design a non-partitioning based ap-

proach that determines independent tasks of the join

algorithm to run in parallel. Then, we address the draw-

backs of the previously proposed hash-based partition-

ing and suggest a domain-based partitioning approach

that does not produce duplicate results. Within our ap-
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proach, we propose a novel breakdown of the partition-

joins into mini-joins to be scheduled in the available

CPU threads and propose an adaptive domain parti-

tioning, aiming at load balancing. We also investigate

how the partitioning phase can benefit from modern

parallel hardware. Our thorough experimental analysis

demonstrates the advantage of our novel partitioning-

based approach for parallel computation.

1 Introduction

Given a 1D discrete or continuous domain, an interval

is defined by a starting and an ending point in this

domain. Consider for example the domain of all non-

negative integers N; two integers start, end ∈ N, with

start ≤ end define an interval i = [start, end] as the

subset of N, which includes all integers x with start ≤
x ≤ end.1 Let R, S be two collections of intervals. The

interval join R 1 S is defined by all pairs of intervals

r ∈ R, s ∈ S that intersect, i.e., r.start ≤ s.start ≤ r.end
or s.start ≤ r.start ≤ s.end.

The interval join is one of the most widely used op-

erations in temporal databases [16]. Generally speaking,

temporal databases store relations of explicit attributes

that conform to a schema and each tuple carries a valid-

ity interval. In this context, an interval join would find

pairs of tuples from two relations which have intersect-

ing validity. For example, assume that the employees of

a company may be employed at different departments

during different time periods. Given the employees in

Figure 1 who have worked in departments A (red), B

(blue), the interval join would find pairs of employees,

whose periods of work in A and B, respectively, overlap.

1 Note that the intervals in this paper are closed. Yet, our
techniques and discussions apply on generic intervals where
the begin and end sides are either open or closed.
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employee start end

John 1994 2002

Mary 1992 2006

John

Bob
Jane

Hugo
Helen

Mary

year

employee start end

Jane 1990 1993

Bob 1995 1996

Hugo 1997 2003

Helen 2005 2007

Tom 2006 2008

Tom

Fig. 1: Motivation example in temporal databases

Interval joins find application in other domains as

well. In multidimensional spaces, an object can be rep-

resented as a set of intervals from a space-filling curve.

The intervals correspond to the subsequences of points

on the curve that are included in the object. Spatial

joins can then be reduced to interval joins in the space-

filling curve representation [22]. The filter-step of spa-

tial joins between sets of objects approximated by min-

imum bounding rectangles (MBRs) can also be pro-

cessed by finding intersecting pairs in one dimension

(i.e., an interval join) and verifying the intersection in

the other dimension on-the-fly [2,7,36]. Another appli-

cation is uncertain data management. Uncertain values

are represented as intervals (which can be paired with

confidence values). Thus, equi-joins on the uncertain at-

tributes of two relations translate to interval joins [11].

Most of the previous works on interval joins [13,

15,18,32,34] assume that the input data reside on disk

and their objective is to minimize I/O accesses during

the join. Such a setting becomes less relevant in con-

temporary in-memory data management and the wide

availability of parallel and distributed platforms and

models. Hence, the classic plane sweep (PS) algorithm

[31] for in-memory join evaluation has not been the fo-

cus in most of the previous work. A recent paper [29]

proposed an optimized PS algorithm (taken from [2]),

called Endpoint-Based Interval (EBI) Join. EBI sorts

the endpoints of all intervals (from both R and S) and

then sweeps a line which stops at each of the sorted

endpoints. As the line sweeps, EBI maintains the active

sets of intervals from R and S which intersect with the

current stop point of the line to output the join results.

The work of [29] focused on minimizing the random

memory accesses due to the updates and scans of the

active sets. To this end, a special data structure called

gapless hash map was proposed. However, random ac-

cesses can be overall avoided by another implementa-

tion of PS, presented in [7] for MBR (i.e., spatial) joins.

We call this version forward scan (FS) based PS. In a

nutshell, FS sweeps all intervals in increasing order of

their start points. For each interval encountered (e.g.,

r ∈ R), FS scans forward the list of intervals from the

other set (e.g., S). All such intervals having their start
point before the end of r form join results with r. The

cost of FS (excluding sorting) is O(|R|+ |S|+ |R ./ S|),
where |R ./ S| is the number of join results.

Contributions. In this work, we investigate the in-

memory computation of interval joins, taking advan-

tage of the parallel processing offered by modern multi-

core hardware. Our contributions are twofold. First, we

study the single-threaded computation of interval joins,

by presenting four novel optimizations for the FS algo-

rithm, which greatly reduce its computational cost. In

particular, optimized FS manages to produce multiple

join tuples in batch at the cost of a single compari-

son or even output some results with zero comparisons.

The performance of FS is further enhanced by careful

storage of the intervals in main memory, which reduces

cache misses. Overall, we achieve competitive or better

performance to the state-of-the-art PS algorithm (EBI
[29]), without using any special data structures.

Second, we study the in-memory parallel computa-

tion of interval joins. We investigate two approaches

that differ on whether they physically partition the in-

puts. Our no-partitioning method operates in a master-

slaves manner; the master CPU thread sweeps input

intervals, while slave threads perform independent for-

ward scans in parallel. For partitioning-based parallel

processing, we first show the limitations of the hash-

based partitioning framework from [29]. Then, we pro-

pose a novel, domain-based partitioning instead. Al-

though intervals should be replicated in the domain

partitions to ensure correctness, as we show, duplicate

results can be avoided, therefore the partition-join jobs

can become completely independent. To minimize the

number of comparisons and also achieve load balancing,

we break down each partition-join into five independent

mini-join jobs with varying costs; in practice, only one

of these mini-joins has the complexity of the original

join problem, while the others have a significantly lower

cost. We show how to schedule these mini-joins to the

available CPU threads. To improve the cost balancing

between the partition-joins, we also suggest an adap-

tive splitting approach. Finally, we present and evaluate

three strategies for the partitioning phase which ben-

efit from modern hardware. Our experimental analysis

shows that the domain-based partitioning framework,

after employing all the proposed optimizations, achieves

high speedup with the number of threads, greatly out-

performing both the hash-based partitioning framework

of [29] and the no-partitioning approach.

Comparison to our previous work. This article sig-

nificantly extends a preliminary version of our work

[5] in a number of directions. First, we design two ad-

ditional optimization techniques for FS which further

boost its performance. All optimizations are thoroughly

evaluated, including new experiments to provide bet-

ter insights. Second, we provide a rule of the thumb

that decides which optimizations to apply, based on the
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characteristics of the join inputs. Accordingly, we devise

optFS, a self-tuning version of FS, which automatically

selects and applies the most appropriate optimizations.

Third, we present a specialized version of FS for inter-

val self-joins, i.e., when we seek overlapping pairs of

intervals in a single collection. Fourth, we discuss and

evaluate a new approach for parallel processing which

does not physically partition the inputs. Fifth, we inves-

tigate alternative strategies for the partitioning phase

of the join. Finally, we conduct new tests to investigate

the best setup for each parallel processing framework.

Outline. The rest of the article is organized as follows.

First, Section 2 discusses related work while Section 3

reviews in more detail plane sweep methods; EBI [29]

and original FS [7]. Then, we discuss the single-threaded

join evaluation. Section 4 details our optimizations for

FS, Section 5 discusses self-joins and Section 6 presents

our experimental analysis which demonstrates the ef-

fect of our FS optimizations. Next, we discuss the par-

allel computation of interval joins. Section 7 presents

two novel parallel techniques, termed no-partitioning

and domain-based partitioning, Section 8 details our

strategies for parallelizing the partitioning phase and

Section 9 presents the second part of our experiments

that demonstrates the efficiency of our parallel interval

join framework. Last, Section 10 concludes the paper.

2 Related Work

We classify previous works based on the data structures

they use and on the underlying architecture.

Nested loops and merge join. Early work on in-

terval joins [18,32] studied a temporal join problem,

where two relations are equi-joined on a non-temporal

attribute and the temporal overlaps of joined tuple pairs

should also be identified. Techniques based on nested-

loops (for unordered inputs) and on sort-merge join (for

ordered inputs) were proposed, as well as specialized

data structures for append-only databases. Similar to

plane sweep, merge join algorithms require the two in-

put collections to be sorted, but join computation is

sub-optimal compared to FS, which guarantees at most

|R|+ |S| comparisons that do not produce results.

Index-based algorithms. Enderle et al. [15] propose

interval join algorithms, which operate on two RI-trees

[23] that index the input collections. Zhang et al. [37]

focus on finding pairs of records in a temporal database

that intersect in the (key, time) space (i.e., a problem

similar to that studied in [18,32]), proposing an exten-

sion of the multi-version B-tree [3].

Partitioning-based algorithms. A partitioning-based

approach for interval joins was proposed in [34]. The

domain is split into disjoint ranges. Each interval is as-

signed to the partition corresponding to the last domain

range it overlaps. The domain ranges are processed se-

quentially from last to first; after the last pair of par-

titions are processed, the intervals which overlap the

previous domain range are migrated to the next join.

This way data replication is avoided. Histogram-based

techniques for defining good partition boundaries were

proposed in [33]. A more sophisticated partitioning ap-

proach, called Overlap Interval Partitioning (OIP) Join

[13], divides the domain into equal-sized granules and

consecutive granules define the ranges of the partitions.

Each interval is assigned to the partition correspond-

ing to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are

joined with their overlapping partitions from the other

collection. OIP was shown to be superior compared to

index-based approaches [15] and sort-merge join. These

results are consistent with the comparative study of

[16], which shows that partitioning-based methods are

superior to nested loops and merge join approaches.

Disjoint Interval Partitioning (DIP) [8] was recently

proposed for temporal joins and other sort-based op-

erations on interval data (e.g, temporal aggregation).

The main idea behind DIP is to divide each of the two

input relations into partitions, such that each partition

contains only disjoint intervals. Every partition of one

input is then joined with all of the other. Since intervals

in the same partition do not overlap, sort-merge com-

putations are performed without backtracking. Prior to

this work, temporal aggregation was studied in [26].

Given a large collection of intervals (possibly associated

with values), the objective is to compute an aggregate

(e.g., count the valid intervals) at all points in time. An

algorithm was proposed in [26] which divides the do-

main into partitions (buckets), assigns the intervals to

the first and last bucket they overlap and maintains a

meta-array structure for the aggregates of buckets en-

tirely covered by intervals. The aggregation can then

be processed independently for each bucket (e.g., us-

ing a sort-merge based approach) and the algorithm

can be parallelized in a shared-nothing architecture. We

also propose a domain-partitioning approach for paral-

lel processing (Section 7), but the details differ due to

the different natures of temporal join and aggregation.

Methods based on plane sweep. The Endpoint-

Based Interval (EBI) Join [29] (reviewed in Section 3.1)

and its lazy version LEBI were shown to significantly

outperform OIP [13] and to also be superior to another

plane sweep implementation [2]. An approach similar to

EBI is used in SAP HANA [21]. To our knowledge, no

previous work was compared to FS [7] (detailed in Sec-

tion 3.2). In Section 4, we propose four optimizations
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for FS that greatly improve its performance, making it

competitive or even faster than LEBI. Last, extensions

and applications of the plane sweep approach has been

discussed in [6,10], but in the context of temporal ag-

gregation and SPARQL query processing, respectively.

Parallel algorithms. A domain-based partitioning strat-

egy for interval joins on multi-processor machines was

proposed in [24]. Each partition is assigned to a proces-

sor and intervals are replicated to the partitions they

overlap, to allow join results being produced indepen-

dently at each processor. At the end, a merge phase

with duplicate elimination is required as the same join

result can be produced by different processors. Du-

plicates can be avoided using the reference test from

[14] but, this approach incurs extra comparisons. Our

parallel processing approach in Section 7 also applies a

domain-based partitioning but produces no duplicates.

Also, we propose a breakdown of each partition join to

a set of mini-join jobs, which has never been considered

in previous work.

Distributed algorithms. Distributed interval joins

were studied in [22]. The goal is to join sets of inter-

vals located at different clients. The clients iteratively

exchange statistics with the server, which help the lat-

ter to compute a coarse-level approximate join; exact

results are refined by on-demand communication with

the clients. Chawda et al. [9] implement the partition-

ing algorithm of [24] in the MapReduce framework and

extend it to operate for other (non-overlap) join predi-

cates. The main goal of distributed algorithms is to min-

imize the communication cost between the machines

that hold the data and compute the join.

3 Plane Sweep for Interval Joins

This section presents the necessary background on plane

sweep based computation of interval joins. First, we de-

tail the EBI algorithm [29]. Then, we review the forward

scan based algorithm from [7], which has been over-

looked by previous work. Both methods take as input

collections R, S of intervals and compute all (r, s) pairs

with r ∈ R, s ∈ S, that intersect. We denote by r.start
(r.end) the starting (ending) endpoint of an interval r.

3.1 Endpoint-Based Interval Join

EBI [29] is based on the internal-memory plane sweep

technique of [31], but tailored to modern hardware. Al-

gorithm 1 illustrates the pseudo-code of EBI. EBI repre-

sents each input interval, e.g., r ∈ R, by two tuples in

the form of 〈endpoint, type, id〉, where endpoint equals

ALGORITHM 1: Endpoint-Based Interval

Join (EBI)
Input : collections of intervals R and S
Output : all intersecting pairs (r, s) ∈ R× S

Variables : endpoint indices EIR and EIS , active
interval sets AR and AS

1 AR ← ∅, AS ← ∅;
2 build EIR and EIS ;

3 sort EIR and EIS first by endpoint then by type;

4 eR ← first index tuple in EIR;

5 eS ← first index tuple in EIS ;

6 while EIR and EIS not depleted do

7 if eR < eS then

8 if eR.type = START then

9 r ← interval in R with identifier eR.id;

10 add r to AR; . r is open

11 foreach s ∈ AS do
12 output (r, s); . update result

13 else

14 remove r from AR; . r no longer open

15 eR ← next index tuple in EIR;

16 else

17 if eS .type = START then

18 s← interval in S with identifier eS .id;

19 add s to AS ; . s is open

20 foreach r ∈ AR do
21 output (r, s); . update result

22 else

23 remove s from AS ; . s no longer open

24 eS ← next index tuple in EIS ;

either r.start or r.end, type flags whether endpoint is a

starting or an ending endpoint, and id is the identifier

of r. These tuples are stored inside the endpoint indices

EIR and EIS , sorted primarily by their endpoint and

secondarily by type. To compute the join, EBI concur-

rently scans the endpoint indices, accessing their tuples

in increasing global order of their sorting key, simulat-

ing a “sweep line” that stops at each endpoint from

either R or S. At each position of the sweep line, EBI
keeps track of the intervals that have started but not

finished, i.e., the index tuples that are start endpoints,

for which the index tuple having the corresponding end
endpoint has not been accessed yet. Such intervals are

called active and they are stored inside sets AR and AS ;

EBI updates these active sets depending on the type en-

try of current index tuple (Lines 10 and 14 for collec-

tion R and Lines 19 and 23 for S). Finally, for a current

index tuple (e.g., eR) of type START , the algorithm it-

erates through the active intervals of the opposite input

(e.g., AS on Lines 11–12) to produce the next bunch of

results (e.g., the intervals of S that join with eR.id).

By recording the active intervals from each collec-

tion, EBI can directly report the join results without any

endpoint comparisons. To achieve this, the algorithm

needs to store and scan the endpoint indices which con-
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ALGORITHM 2: Forward Scan based Plane

Sweep (FS)
Input : collections of intervals R and S
Output : all intersecting pairs (r, s) ∈ R× S

1 sort R and S by start endpoint;
2 r ← first interval in R;
3 s← first interval in S;
4 while R and S not depleted do
5 if r.start < s.start then
6 s′ ← s;

7 while s′ 6= null and r.end ≥ s′.start do
8 output (r, s′); . update result

9 s′ ← next interval in S; . scan forward

10 r ← next interval in R;

11 else
12 r′ ← r;

13 while r′ 6= null and s.end ≥ r′.start do
14 output (r′, s); . update result

15 r′ ← next interval in R; . scan forward

16 s← next interval in S;

tain twice the amount of entries compared to the input

collections. Hence excluding the sorting cost for EIR

and EIS , EBI conducts 2·(|R|+ |S|) endpoint compar-

isons to advance the sweep line, in total. However, the

critical overhead of EBI is the maintenance and scan-

ning of the active sets at each loop; i.e., Lines 10 and

19 (add), Lines 11–12 and 20–21 (scan), Lines 14 and

23 (remove). This overhead can be quite high; for ex-

ample, typical hash map data structures support effi-

cient O(1) updates but scanning their contents is slow.

To deal with this issue, Piatov et al. designed a spe-

cial hash table termed the gapless hash map which effi-

ciently supports all three insert, remove and getNext

operations. Finally, the authors further optimized the

join computation by proposing a lazy evaluation tech-

nique which buffers consecutive index tuples of type
START (and hence, their corresponding intervals) as

long as they originate from the same input (e.g., R).

When producing the join results, a single scan over

the active set of the opposite collection (e.g., AS) is

performed for the entire buffer. This idea is captured

by the Lazy Endpoint-Based Interval (LEBI) Join algo-

rithm. By keeping the buffer size small enough to fit

inside the L1 cache or even the cache registers, LEBI
greatly reduces main memory cache misses and hence,

outperforms EBI even more.

3.2 Forward Scan based Plane Sweep

The experiments in [29] showed that LEBI outperforms

not only EBI, but also the plane sweep algorithm of [2],

which directly scans the inputs ordered by start end-

point and keeps track of the active intervals in a linked

list. Intuitively, both approaches perform a backward

scan, i.e., a scan of already encountered intervals, or-

ganized by a data structure that supports scans and

updates. In practice however, the need to implement

a special structure may limit the applicability and the

adoption of these evaluation approaches while also in-

creasing the memory space requirements.

In [7], Brinkhoff et al. presented a different imple-

mentation of plane sweep, which performs a forward

scan directly on the input collections and hence, (i)

there is no need to keep track of active sets in a special

data structure and (ii) data scans are conducted sequen-

tially. 2 Algorithm 2 illustrates the pseudo-code of this

method, denoted by FS. First, both inputs are sorted

by the start endpoint of each interval. Then, FS sweeps

a line, which stops at the start endpoint of all intervals

of R, S in order. For each position of the sweep line,

corresponding to the start of an interval, say r ∈ R, the

algorithm produces join results by combining r with all

intervals from the opposite collection, that start (i) af-

ter the sweep line and (ii) before r.end, i.e., all s′ ∈ S
with r.start ≤ s′.start ≤ r.end (internal while-loops on

Lines 7–10 and 13–16). Excluding the cost of sorting R

and S, FS conducts |R|+|S|+|R./S| point comparisons,

in total. Specifically, each interval r ∈ R (the case for

S is symmetric) is compared to just one s′ ∈ S which

does not intersect r in the loop at Lines 8–10.

4 Optimizing FS

We present four optimization techniques for FS that can

greatly enhance its performance. Naturally, the cost of

FS cannot be asymptotically reduced; |R| + |S| end-

point comparisons is the unavoidable cost of advanc-

ing the sweep line. However, it is possible to reduce the

number of |R./ S| comparisons required to produce the

join results, which is the focus of the first two optimiza-

tion techniques termed grouping and bucket indexing.

In addition, low level code engineering and careful data

layout in main memory can further improve the run-

ning time of FS, which is the focus of our enhanced loop

unrolling and decomposed data layout techniques.

4.1 Grouping

The intuition behind our first optimization technique

is to group consecutively sweeped intervals from the

same collection and produce join results for them in

batch, avoiding redundant comparisons. We exemplify

this idea in Figure 2, which depicts intervals {r1, r2} ∈

2 The algorithm originally targets intersection join of 2D
rectangles, but it is straightforward to apply for interval joins.
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(a) Results: {(r1, s2), (r1, s3) (b) Results: {(r2, s2), (r2,s3)}
(r1, s4)}

gFS

domain

s2
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s3 s4s5
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r1

r2’s scanned area
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r1’s scanned area

r2

s2
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s3 s4
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(c) Results: {(r2, s2), (r1, s2), (d) Results: {(r1, s4)}
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r1’s scanned area
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s3 s4
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s3 s4
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(e) Results: {(r1, s2), (r1, s3), (f) Results: {(r2, s2), (r2, s3)}
(r1,s4)}
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domain

r2’s scanned area
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s3 s4

r1

s5
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B

domain

r1’s scanned area

r2

s2
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s3 s4
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GR

B

(g) Results: {(r2, s2), (r1, s2), (h) Results: {(r1, s4)}
(r2, s3), (r1, s3)}

Fig. 2: Scanned areas by FS, gFS, bFS and bgFS for r1

and r2; with grouping r2 precedes r1. Underlined result

pairs are produced without any endpoint comparisons.

R and {s1, s2, s3, s4, s5} ∈ S sorted by start endpoint.

Assume that FS has already examined s1; since r1.start <
s2.start, the next interval where the sweep line stops

is r1. Algorithm 2 (Lines 7–10) then forwardly scans

through the shaded area in Figure 2(a) from s2.start
until it reaches s5.start > r1.end, producing result pairs

{(r1, s2), (r1, s3), (r1, s4)}. The next stop of the sweep

line is r2.start, since r2.start < s2.start. FS scans through

the shaded area in Figure 2(b) producing results {(r2, s2),

(r2, s3)}. We observe that the scanned areas of r1 and

r2 are not disjoint, which in practice means that FS per-

formed redundant endpoint comparisons. Indeed, this is

the case for s2.start and s3.start which were compared

to both r1.end and r2.end. However, since r1.end >

r2.end holds, r2.end > s2.start automatically implies

that r1.end > s2.start; therefore, pairs (r1, s2), (r2, s2)

could have been reported by comparing only r2.end to

ALGORITHM 3: FS with grouping (gFS)
Input : collections of intervals R and S
Output : all intersecting pairs (r, s) ∈ R× S

Variables : groups GR and GS

1 sort R and S by start endpoint;
2 r ← first interval in R;
3 s← first interval in S;
4 while R and S not depleted do
5 if r.start < s.start then

6 GR ← next group from R w.r.t. r, s;

7 sort GR by end endpoint;

8 s′ ← s;

9 foreach ri ∈ GR in order do
10 while s′ 6= null and s′.start ≤ ri.end do

11 foreach rj ∈ GR, j ≥ i do
12 output (rj , s

′); . update result

13 s′ ← next interval in S; . scan forward

14 r ← first interval in R after GR;

15 else

16 GS ← next group from S w.r.t. s, r;

17 sort GS by end endpoint;

18 r′ ← r;

19 foreach si ∈ GS in order do
20 while r′ 6= null and r′.start ≤ si.end do

21 foreach sj ∈ GS , j ≥ i do
22 output (r′, sj); . update result

23 r′ ← next interval in R; . scan forward

24 s← first interval in S after GS ;

s2.start. Hence, processing consecutively sweeped in-

tervals from the same collection (e.g., r1 and r2) as a

group allows us to scan their common areas only once.

Algorithm 3 illustrates the pseudo-code of gFS, which

enhances FS with the grouping optimization. Instead of

processing a single interval at a time, gFS considers a

group of consecutive intervals from the same collection

at a time. Specifically, assume that at the current loop

r.start < s.start (the other case is symmetric). Starting

from r, gFS accesses all r′ ∈ R with r′.start < s.start
(Line 7) and puts them in a group GR. Next, the con-

tents of GR are reordered by increasing end endpoint

(Line 8). Then, gFS initiates a forward scan on S start-

ing from s′ = s (Lines 9–14), but unlike FS the scan is

done only once for all intervals in GR. For each ri ∈ GR

in the new order, if s′.start ≤ ri.end, then s′ intersects

not only ri but also all intervals in GR after ri (due

to the sorting of GR by end). If s′.start > ri.end, then

s′ does not join with ri but may join with succeeding

intervals in GR, so the for loop proceeds to the next

ri ∈ GR.

Figures 2(c) and 2(d) exemplify gFS for intervals r1

and r2 grouped under GR; as r1.end > r2.end, r2 is con-

sidered first. When the shaded area in Figure 2(c) from

s2.start until s4.start is scanned, gFS produces results

that pair both r2 and r1 with covered intervals s2 and

s3 from S, by comparing s2.start and s3.start only to

r2.end. Intuitively, avoiding redundant endpoint com-
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BIS

s2
s1

s3 s4

r1

{r1,r2} BIR

{s1} {s2,s3}
s5

{s4,s5}

r2

Fig. 3: Bucket indexing: domain stripes and BIR, BIS

bucket indices for the intervals of Figure 2.

parisons corresponds to removing the overlap between

the scanned areas of consecutive intervals; compare r1’s

scanned area by gFS in Figure 2(d) to the area in Fig-

ure 2(b) by FS after removing the overlap with r2’s

area.

Discussion and implementation details. The group-

ing technique of gFS differs from the buffering employed

by LEBI [29]. First, LEBI groups consecutive start end-

points in a sort order that includes 4 sets of items,

whereas in gFS there are only 2 sets of items (i.e., only

start endpoints of the two collections). As a result, the

groups in gFS are likely to be larger than LEBI’s buffer

(and larger groups make gFS more efficient). Second,

the buffer in LEBI is solely employed for outputting re-

sults while groups in gFS also facilitate the avoidance of

redundant endpoint comparisons due to the reordering

of groups by end endpoint.

Regarding the implementation of grouping in gFS,

we experimented with two different approaches. In the

first approach, each group is copied to and managed

in a dedicated array in main memory. The second ap-

proach retains pointers to the begin and end index of

each group in the corresponding collection; the segment

of the collection corresponding to the group is re-sorted

(note that correctness is not affected by this). Our tests

showed that the first approach is always faster, due to

the reduction of cache misses during the multiple scans

of the group (i.e., Lines 12-13 and Lines 22-23).

4.2 Bucket Indexing

Our second optimization technique extends FS to avoid

even more endpoint comparisons during the computa-

tion of the join results. The idea is as follows. First, we

split the domain into a predefined number of equally-

sized disjoint stripes; all intervals from R (resp. S) that

start within a particular stripe are stored inside a dedi-

cated bucket of the BIR (resp. BIS) bucket index. Fig-

ure 3 exemplifies the domain stripes and the bucket

indices for the interval collections of Figure 2.3

3 A bucket may in fact be empty; however, we can control
the ratio of empty buckets by properly setting the total num-

ALGORITHM 4: FS with bucket indexing

(bFS)
Input : collections of intervals R and S
Output : all intersecting pairs (r, s) ∈ R× S

Variables : bucket indices BIR and BIS

1 sort R and S by start endpoint;

2 build BIR and BIS ;
3 r ← first interval in R;
4 s← first interval in S;
5 while R and S not depleted do
6 if r.start < s.start then
7 s′ ← s;

8 B ← bucket in BIS : B.start ≤ r.end < B.end;

9 while s′ is before B do . no comparisons

10 output (r, s′); . update result

11 s′ ← next interval in S; . scan forward

12 while s′ 6= null and s′.start ≤ r.end do
13 output (r, s′); . update result

14 s′ ← next interval in S; . scan forward

15 r ← next interval in R;

16 else
17 r′ ← r;

18 B ← bucket in BIR: B.start ≤ si.end < B.end;

19 while r′ is before B do . no comparisons

20 output (r′, s); . update result

21 r′ ← next interval in R; . scan forward

22 while r′ 6= null and s.end ≥ r′.start do
23 output (r′, s); . update result

24 r′ ← next interval in R; . scan forward

25 s← next interval in S;

With the bucket indices, the area scanned by FS
for an interval is entirely covered by a range of stripes.

Consider Figures 2(c) and (e); r1’s scanned area lies

inside four stripes which means that the involved in-

tervals from S start between the BIS bucket covering

s2.start and the BIS bucket covering r1.end. In this

spirit, area scanning resembles a range query over the

bucket indices. Hence, every interval si from a bucket

completely inside r1’s scanned area or lying after s2

in the first bucket, can be paired to r1 as join result

without any endpoint comparisons; by definition of the

stripes/buckets, for such intervals si.start ≤ r1.end. So,

we only need to conduct endpoint comparisons for the

si intervals from the bucket that covers r1.end. This

distinction is graphically shown in Figures 2(e) and (f)

where solid gray areas are used to directly produce join

results with no endpoint comparisons. Observe that, for

this example, both join results produced when FS per-

forms a forward scan for r2 are directly reported when

using the bucket indexing. On the other hand, bucket

indexing enables us to directly report only two of the

three join results for r1 as the bucket that contains s4

is not completely inside r1’s scanned area.

Algorithm 4 illustrates the pseudo-code of bFS which

enhances FS with bucket indexing. Essentially, bFS op-

ber of stripes while in practice, empty buckets mostly occur
for very skewed distributions of the start endpoints.
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FS
forward scan

uFS (unrolling factor = 4)
forward scan

Fig. 4: Enhanced loop unrolling: forward scans. End-

point comparisons are coloured in dark gray; direct re-

sults output with no comparisons are in light gray.

erates similar to FS. Their main difference lies in the

forward scan for the current interval. Without loss of

generality, consider r ∈ R (the case of s ∈ S is symmet-

ric); Lines 8–14 implement the range query discussed in

the previous paragraph. The algorithm first identifies

bucket B ∈ BIS which covers r.end. Then, it iterates

through the s′ ∈ S intervals after current s, originat-

ing from all buckets before B to directly produce join

results on Lines 9–11 without any endpoint compar-

isons, while finally on Lines 12–14, the intervals of B

are scanned and compared exactly as in FS.

Discussion and implementation details. In our im-

plementation, we choose not to materialize the index

buckets, i.e., no intervals are copied to dedicated data

structures. We store for each bucket a pointer to the last

interval in it; this allows bFS to efficiently perform the

forward scans. With this design, we guarantee a small

main memory footprint for our method as there is no

need to practically store a second copy of the data.

4.3 Enhanced Loop Unrolling

Our third optimization builds upon a code transforma-

tion technique known as loop unrolling or loop unwind-

ing [1,27,28]. Essentially, the goal of loop unrolling is to

reduce the execution time by (i) eliminating the over-

head of controlling a loop (i.e., checking its exit con-

dition) and the latency due to main memory accesses,

and (ii) reducing branch penalties. Such a transforma-

tion can be carried either manually by the programmer

or automatically by the compiler; our focus is on the

former case.

The idea of manual unrolling involves the re-writting

of the loop as a repeated sequence of similar indepen-

dent statements. For example, a loop which processes

the 1,000 elements of an array can be modified to per-

form only 100 iterations using a so-called unrolling fac-

tor of 10; i.e., every iteration of the new loop executes

10 identical and independent element processing state-

ments. In this spirit, a straightforward way to benefit

from loop unrolling will be to unfold the forward scan

loop on Lines 7–9 of Algorithm 2 (the case of Lines 13–

15 is symmetric) by a factor of x. Under this, the exit

condition s′ 6= null will checked only once for every x-

th interval. Also, every iteration of the new loop checks

the r.end ≥ s′.start overlap condition on each of the

next x (r, s′) pairs and if so, the pair is output.

Despite its positive effect on reducing the loop cost,

this straightforward approach would still incur the same

number of endpoint comparisons as the forward scan of

FS, because the r.end ≥ s′.start condition is checked for

every reported pair. In view of this, we propose an adap-

tation termed the enhanced loop unrolling which skips

endpoint comparisons to accelerate FS. Specifically, in-

stead of checking r.end ≥ s′.start for every (r, s′) pair,

we check whether this condition holds for the x-th s′.

If so, all x intervals are guaranteed to pair with current

interval r, the x pairs are reported without the need

of any comparisons, and we proceed to the next x in-

tervals. Otherwise (i.e., if r.end < s′.start) the x-th s′

interval does not overlap r and therefore, we need to

scan the x − 1 intervals similar to FS. We denote by

uFS the extension of FS which employs the enhanced

loop unrolling optimization.

Figure 4 illustrates the functionality and the effect

of the enhanced loop unrolling. Fix current interval r

from collection R, which overlaps with 8 intervals from

S. The forward scan of FS accesses 9 s′ intervals, con-

ducting 9 endpoint comparisons for the r.end ≥ s′.start
condition. The last comparison is needed to terminate

the forward scan, i.e., it determines the first s′ interval

that starts after r.end. On the other hand, uFS with

an unrolling factor of 4, requires only 4 endpoint com-

parisons, in total. Specifically, the r.end ≥ s′.start con-

dition is initially checked for the fourth interval in S;

since, the condition holds, all first 4 s′ intervals over-

lap current r. The next 4 s′ intervals are examined in

the same manner. Last, uFS checks the r.end ≥ s′.start
condition for the twelfth s′ interval. As r.end < s′.start,
the twelfth interval from S does not overlap r, which

means that uFS will complete the forwards scan similar

to FS conducting an extra endpoint comparison for the

ninth interval.

4.4 Decomposed Data Layout

We can further enhance FS by carefully storing the in-

put interval, in main memory. To demonstrate our intu-

ition, consider again Algorithm 2 and the pseudo-code

of FS. The algorithm essentially performs two opera-

tions; it advances the sweep line and forwardly scans

the collections. We observe that neither of these opera-

tions considers every attribute from the input intervals.

Specifically, in order to advance the sweep line the start
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end

sweeping & forward scans
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end
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dFS gdFS

group scan
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start

sweeping & forward scans

group scans

start

end

Fig. 5: Decomposed data layout: sweeping and scans.

endpoints of the current intervals r ∈ R and s ∈ S are

compared, while end endpoints are of no use. Concern-

ing forward scanning, assume without loss of generality

that the current (fixed) interval is r ∈ R and so, FS will

next scan collection S (the case of forwardly scanning

R is symmetric). Essentially, the algorithm needs only

the end endpoint of current interval r and the start end-

point of every scanned interval s′ from S, in order to

check the r.end ≥ s′.start condition in Line 7. On the

other hand, both r.start and s′.end for every examined

s′ are of no use to the forward scan operation.

Based on this observation, our last technique is in-

spired by the Decomposition Storage Model (DSM) [12],

adopted by column-oriented database systems (e.g., [35]).

Instead of storing an input collection as an array of

〈start, end〉 tuples, we decompose it into two separate

arrays; one having the start endpoints and one with

end endpoints. With this decomposition, the algorithm

can iterate only over the start arrays when advancing

the sweep line or forward scanning, which results in

a smaller footprint in main memory and reduces the

number of cache misses. We denote by dFS the exten-

sion of FS that employs our decomposed data layout.

Figure 5 illustrates our decomposed data layout for dFS
compared to the data layout for FS.

4.5 Employing all Optimizations

We finally discuss how all proposed optimization tech-

niques can be put together in FS. Grouping and bucket

indexing optimize FS in an orthogonal manner; hence,

it is possible to pair the optimizations resulting to what

we call FS with grouping and bucket indexing (bgFS).

Figures 2(g) and (h) exemplify bgFS for intervals r2 and

r1 (sorted by end endpoints) and their group GR. Com-

pared to bFS, the algorithm iterates through the same

buckets regarding r2’s scanned area, but produces join

results for both r2 and r1 at the same time, similarly

to gFS. Regarding r1’s scanned area, bgFS operates ex-

actly as gFS since the area is covered by a single bucket.

Essentially, the pseudo-code of bgFS would resem-

ble Algorithm 4 of bFS with the exceptions of having to

form groups and how the forward scans are performed.

Similar to gFS and Lines 6–7 in Algorithm 3, bgFS
groups together consecutive intervals from the same in-

put and reorders the contents of each group by their

increasing end endpoint. Then, Lines 9–11 and 12–14

are adjusted according to Lines 9–13 in Algorithm 3 of

gFS, where a forward scan is performed for an entire

group instead of a single interval. The case of grouping

on collection S is symmetric.

The performance of bgFS can be further improved

by the enhanced loop unrolling and adopting the de-

composed data layout. Plugging enhanced loop unrolling

into bgFS is straightforward and so is pairing our de-

composed data layout with bucket indexing. Grouping

can be enhanced by carefully decomposing the group

data. Without loss of generality consider gFS; the same

approach can be applied for bgFS and bguFS. Similarly

to FS, we observe that forward scans on collection S in

(Lines 9–13, Algorithm 3) take into account only the

end endpoint of each interval in group GR (the case of

forward scanning R is symmetric). In fact, start for r

intervals is used only to form the group in Line 6 before

the forward scan commences. Hence, we can model ev-

ery group as two arrays. Figure 5 illustrates this idea.

Originally, all gFS operations are conducted under the

original layout where both the input collections and cre-

ated groups are stored in arrays of 〈start, end〉 tuples.

In contrast, by employing our decomposed layout ad-

vancing the sweep line and forward scan operations use

only the start arrays whereas group scans (i.e., the for

loops in Line 9 and 19) operate on the end arrays.

In Section 6.2, we experimentally study the effect

of each of the four proposed optimization techniques.

We also provide insights on how we can decide which

of them should be activated depending on the charac-

teristics of the input collections. To this end, we devise

the optFS method in Section 6.3.

5 The Case of Self-Joins

Up to this point, we investigated only the case where

the intervals from two distinct collections are joined. In

this section, we discuss the case of a self-join, which

receives a single collection as input R and looks for the

pairs of intervals (ri, rj) ⊆ R × R that overlap. All in-

terval join algorithms, which we have discussed already,

can be directly applied to solve this problem, if we set

the second input S = R. However, such an approach re-

quires a duplicate elimination post-processing step (or

an extra comparison for each computed pair), otherwise
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ALGORITHM 5: Self-join FS
Input : collection of intervals R
Output : all intersecting pairs (r, r′) ∈ R× R

1 sort R by start endpoint;
2 r ← first interval in R;
3 while R not depleted do
4 output (r, r); . update result

5 r′ ← interval right after r in R;

6 while r′ 6= null and r.end ≥ r′.start do
7 output (r, r′); . update result

8 r′ ← next interval in R; . scan forward

9 r ← next interval in R;

every (ri, rj) would be reported twice, increasing the to-

tal number of results to (2·|R ./ R|−|R|). Consider, for

example, the collection R = {r1[3, 5], r2[4, 6], r3[7, 11]}.
The result of the R ./ R self-join contains pairs (r1, r1),

(r1, r2), (r2, r2) and (r3, r3). Now, assume we use FS
from Algorithm 2 to compute this join by setting S =

R. The sweep line will first stop at r1; the forward scan

on S will start from s1 and output (r1, s1) and (r1, s2),

which correspond to (r1, r1) and (r1, r2). The next in-

terval will be s1; the forward scan will start from the

current interval from R, which was set to r2 at the end

of the first forward scan, and hence, output (s1, r2) (i.e.,

(r1, r2)) for a second time.

To address this issue, we design a simplified version

of FS which pairs an interval r only with itself and

intervals from the collection that come after r in the

sort order.4 Algorithm 5 illustrates the pseudo-code for

the self-join version of FS. Going back to the previous

example, the forward scan for r1 will produce (r1, r2)

but the forward scan for r2 will start from r3 and so,

avoid duplicate results.

All our proposed optimizations can be applied on

the self-join FS. The case of bucket indexing is straight-

forward; in practice, only one bucket index is defined

and Algorithm 5 is extended accordingly to Algorithm 4.

Enhanced loop unrolling and decomposed data layout

for self-joins operate exactly as discussed in Sections 4.3

and 4.4, respectively. On the other hand, we reconsider

our grouping optimization, as all intervals are essen-

tially consecutive from the same input. The solution is

to group together intervals with exactly the same start
endpoint. Last, special care is taken for the group scan

of gFS (i.e., corresponding to the for loop in Lines 9

and 9, Algorithm 3). Specifically, to avoid duplicate re-

sults the i-th interval of a group G is paired to itself

and the |G| − i intervals that come after it inside G, in

the sort order. Note that these results can be reported

while constructing the group.

4 A similar approach can be taken for EBI / LEBI; in this
case, we maintain only one active set A.

6 Experiments on Single-threaded Processing

We next present the first part of our experimental anal-

ysis on the single-threaded computation of interval joins.

6.1 Setup

Our single-threaded analysis was conducted on a ma-

chine with 384 GBs of RAM and a dual Intel(R) Xeon(R)

CPU E5-2630 v4 clocked at 2.20GHz running CentOS

Linux 7.3.1611. All methods were implemented in C++,

compiled using gcc (v4.8.5) with flags -O3, -mavx and

-march=native. We imported in our source code the

implementations of EBI/LEBI [29], OIP [13] and DIP
[8], kindly provided by the authors of the corresponding

papers. The setup of our benchmark is similar to [29];

every interval contains two 64-bit endpoint attributes

(i.e., start and end) while the workload accumulates the

sum of an XOR between the start attributes on every

result pair. Note that all data (input collections, index

structures etc.) reside in main memory.

Datasets. We experimented with 6 real datasets, the

majority of which was used in recent literature on in-

terval joins; Table 1 details the characteristics of the

datasets. BOOKS [5] records all transactions at Aarhus

public libraries in 2013 (https://www.odaa.dk); valid

times indicate the periods when a book is lent out.

FLIGHTS [6] records domestic flights in USA during

January 2016 (https://www.bts.gov); valid times indi-

cate the duration of a flight. GREEND [8,25] records

power usage data from households in Austria and Italy

from January 2010 to October 2014; valid times indi-

cate the period of a measurement. INFECTIOUS [8,19]

stores visiting information from the “INFECTIOUS:

stay Away!” exhibition at Science Gallery in Dublin,

Ireland, from May to July 2009; valid times indicate

when a contact between visitors occurred. TAXIS records

taxi trips (pick-up, drop-off timestamp) from New York

City (https://www1.nyc.gov/site/tlc/index.page) in 2013;

valid times indicate the duration of each ride. WEBKIT

[5,6,13] records the file history in the git repository of

the Webkit project from 2001 to 2016 (https://webkit.org);

valid times indicate the periods when a file did not

change.

Queries. We ran a series of interval join queries us-

ing uniformly sampled subsets of each dataset as the

outer input R and the entire dataset as the inner S; for

each setting, the |R|/|S| ratio varies inside {0.25, 0.5,

0.75, 1}.5 To assess the performance of the evaluation

methods, we measured their total execution time which

5 We also tested disjoint subsets observing similar behavior.
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Table 1: Characteristics of experimental datasets

BOOKS [5] FLIGHTS [6] GREEND [8,25] INFECTIOUS [8,19] TAXIS WEBKIT [5,6,13]

Cardinality 2,312,602 445,827 110,115,441 415,912 172,668,003 2,347,346
Domain duration (secs) 31,507,200 2,750,280 283,356,410 6,946,360 31,768,287 461,829,284
Distinct endpoints 5,330 41,975 182,028,123 81,514 29,873,023 174,471
Shortest interval (secs) 1 1,260 1 20 1 1
Avg. interval duration (secs) 2,201,320 8,790 15 20 758 33,206,300
Longest interval (secs) 31,406,400 42,300 59,468,008 20 2,148,385 461,815,512

Table 2: Tuning bucket indexing: bFS execution time [secs] for |R| = |S|; lowest time in bold

# buckets B (or domain stripes) BOOKS FLIGHTS GREEND INFECTIOUS TAXIS WEBKIT

1 645 1.33 9.74 0.022 1,464 1,250
5 552 1.33 10.3 0.022 1,345 1,120
10 524 1.21 10.3 0.022 1,340 1,126
50 451 1.21 10.4 0.023 1,332 1,063
100 372 1.16 10.5 0.025 1,314 914
500 355 0.92 10.4 0.026 1,312 899

1,000 353 0.72 10.5 0.025 1,286 877
5,000 348 0.56 10.1 0.024 1,268 874
10,000 347 0.53 10.3 0.026 1,281 872
50,000 350 0.52 10.9 0.027 1,065 873
100,000 354 0.52 10.2 0.027 872 865
500,000 354 0.53 10.5 0.033 693 878

1,000,000 347 0.53 10.7 0.040 645 876
5,000,000 355 0.58 10.1 0.089 651 902
10,000,000 354 0.64 10.8 0.105 650 898
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Fig. 6: Selectivity of the tested join queries

includes sorting, indexing and partitioning costs (wher-

ever applicable).

Figure 6 reports on the selectivity of our tested join

queries; for each dataset and |R|/|S| value, the figure

plots how many intervals overlap with an input interval,

on average. Under this, our datasets can be essentially

divided into 3 categories. Joins on GREEND and IN-

FECTIOUS are highly selective as every interval over-

laps with at most 10 others, on average. In contrast, the

result sets on WEBKIT and BOOKS queries include

over 10,000 pairs for each input interval, on average.

Queries on FLIGHTS and TAXIS lie in the middle, but

they are significantly less selective than the GREEND

and INFECTIOUS joins.

Tuning. To tune our bucket indexing optimization, we

ran a test for the |R| = |S| setting which monitored the

execution time of bFS while varying the number B of

buckets or equivalently the number of domain stripes

used. Table 2 reports on the results of this test; the

lowest execution time for each dataset is highlighted in

bold. We draw two important findings. First, bucket in-

dexing is not effective on GREEND and INFECTIOUS;

the lowest execution time was observed for B = 1, i.e.,

when bFS operates exactly as FS. We elaborate on this

issue in the next section. On the other hand, increas-

ing the number of buckets accelerates bFS for BOOKS,

FLIGHTS, TAXIS and WEBKIT joins. The best B

value for all four datasets lies in between 10,000 and

1,000,000; further increasing B eventually slows down

bFS because the domain is fragmented in too many

stripes. Under this, we set the number of buckets for

the rest of this article to 100,000. Last, we set the loop

unrolling factor to 32, similar to previous work in [29],

such that every loop iteration can be processed as high

as possible in the main memory cache hierarchy.

6.2 Optimizing FS

We first study the effectiveness of our optimization tech-

niques for FS, i.e., grouping, bucket indexing, enhanced

loop unrolling and decomposed data layout, captured

by methods gFS, bFS, uFS and dFS, respectively. Fig-

ure 7 reports the execution time of the methods. To

save space, we do not include a breakdown for the exe-

cution time of the methods. Nevertheless, the findings

are similar to the case of one partition in Figures 11 and

13, i.e., for highly selective queries, sorting dominates

the total computation cost.

Grouping. We observe that the grouping optimization

is effective in 4 out of our 6 experimental datasets. In

fact, the execution times in Figure 7 align with the join

selectivities in Figure 6. For the highly selective queries

in GREEND and INFECTIOUS, gFS is slower than
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Table 3: Grouping: extent of forward scan per input interval

dataset
|R|/|S|

0.25 0.5 0.75 1
FS gFS FS gFS FS gFS FS gFS

BOOKS 63,557 1,149 103,769 1,321 133,746 1,406 156,001 1,456
FLIGHTS 753 140 1,257 185 1,615 208 1,885 220
GREEND 3.1 2.1 5.1 3.9 6.5 5.3 7.5 6.5

INFECTIOUS 5.6 0.5 9.5 0.8 12.2 1.2 14.2 1.5
TAXIS 2,039 576 3,398 893 4,369 1,069 5,098 1,169

WEBKIT 106,209 6,943 181,776 11,029 233,422 13,713 272,945 15,408

Table 4: Grouping: average group size

dataset
|R|/|S|

0.25 0.5 0.75 1

BOOKS 290 339 392 446
FLIGHTS 11.1 10.6 11.3 12.3
GREEND 2.7 1.7 1.4 1.2

INFECTIOUS 13.5 8.1 6.3 5.4
TAXIS 7.2 5.9 6 6.3

WEBKIT 14.4 12.2 12.3 13.4

FS gFS bFS uFS dFS bgudFS
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Fig. 7: Optimizing FS: execution time

FS. As these datasets contain very short intervals (see

Table 1), a forward scan by FS examines only a few

intervals (10 or less on average, according to Figure 6);

recall that the forward scan for an interval, e.g., r ∈ R,

extents from the first interval in S which starts after

r.start until the first interval in S which starts after

r.end. As a result, any reduction in the average extent

of the forward scan achieved by gFS does not payoff

in practice. Table 3 reports on the forward scan extent

per interval by FS and gFS.6 Grouping induces a clear

6 Overall, gFS forwardly scans the same number of intervals
as FS - otherwise, its result set would be incomplete. However,

Table 5: Bucket indexing: percentage of the join results

produced without endpoint comparisons.

dataset
|R|/|S|

0.25 0.5 0.75 1

BOOKS 77% 72% 75% 77%
FLIGHTS 60% 60% 60% 60%
GREEND 9% 9% 9% 9%

INFECTIOUS 0% 0% 0% 0%
TAXIS 49% 48% 48% 48%

WEBKIT 78% 73% 63% 59%

relative reduction of this extent for INFECTIOUS (ap-

proximately, one order of magnitude), but in absolute

numbers the forward scans were very short and thus,

cheap in the first place. An additional indicator for

the ineffectiveness of grouping is the size of the created

groups, reported in Table 4. Notice that for GREEND

queries, groups contain less than two intervals on aver-

age; hence, gFS does not provide any benefit over FS.

On the other hand, gFS significantly outperforms

FS, by a wide margin (up to one order of magnitude),

for BOOKS, WEBKIT, FLIGHTS and TAXIS where

the join queries return a large number of results. As

the intervals in these datasets are significantly longer

compared to GREEND and INFECTIOUS, a forward

scan by FS examines a large number of intervals and

consequently conducts a large number of endpoint com-

parisons. In this context, grouping consecutive intervals

from the same input and performing a single forward

scan for the entire group enables gFS to massively pro-

duce result pairs and avoid redundant comparisons. In

fact, the performance gain of gFS over FS grows with

|R|/|S|, as the extent of the forward scans increases

and the join queries become computationally harder.

Last, we observe that the effectiveness of grouping in-

creases also with the size of the created groups; notice

how much gFS outperforms FS in BOOKS where each

group contains some hundreds of intervals.

Bucket indexing. Similar to grouping, the effective-

ness of the bucket indexing optimization depends on

the extent of the forward scans. Recall from Section 4.2

gFS manages to reduce the total number of conducted scans
as it performs one scan per group instead of one scan per
interval ; this optimization is equivalent to reducing the extent
of the forward scan per input interval.
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Table 6: Enhanced loop unrolling: percentage of the join

results produced without endpoint comparisons.

dataset
|R|/|S|

0.25 0.5 0.75 1

BOOKS 97% 97% 97% 97%
FLIGHTS 97% 97% 97% 97%
GREEND 48% 59% 64% 68%

INFECTIOUS 75% 77% 79% 80%
TAXIS 97% 97% 97% 97%

WEBKIT 97% 97% 97% 97%

that bFS performs the forward scans as range queries

over the domain stripes; buckets for stripes entirely con-

tained inside the forward scan areas provide direct join

results, i.e., without the need for additional endpoint

comparisons. The longer forward scans are, the more

stripes are entirely covered and hence, a larger num-

ber of redundant comparisons are avoided. Under this,

bFS outperforms FS for all |R|/|S| values on BOOKS,

FLIGHTS, TAXIS and WEBKIT queries, while FS is

faster than bFS for GREEND and INFECTIOUS where

forward scans are very short. Table 5 reports the ratio

of the result pairs that bFS outputs without conducting

any comparisons. For joins on GREEND and INFEC-

TIOUS, bFS essentially operates similar to FS but with

the extra cost of creating and querying the bucket in-

dices. In contrast, for the rest of the datasets, bFS out-

puts from 48% to over 70% of the result pairs without

any endpoint comparisons.

Enhanced loop unrolling. Among all four proposed

optimizations, the enhanced loop unrolling is the most

robust. As Figure 7 shows, the technique is very ef-

fective when forward scans are long, i.e., for all queries

in BOOKS, FLIGHTS, TAXIS and WEBKIT, while for

highly selective joins with short scans, i.e., in GREEND,

INFECTIOUS, it is less effective but almost never slows

down the computation. The ratio of the result pairs

which uFS outputs without any endpoint comparisons

supports this finding (see Table 6); note that even on

the highly selective joins in GREEND and INFECTIOUS,

uFS directly outputs 50% or more of the results.

Decomposed data layout. Last, our decomposed data

layout exhibits similar behaviour to grouping and bucket

indexing. Essentially, long forward scans incur a large

main memory footprint and hence, scanning a smaller

in bytes dedicated array for start endpoints can signif-

icantly reduce the cache misses. Under this, queries on

BOOKS and WEBKIT benefit the most from applying

dFS. In contrast, for GREEND and INFECTIOUS the

extra cost of the decomposition does not payoff as data

for the forward scans are already small enough to be

handled in the highest levels of the cache.

Discussion. Figure 7 also reports the execution time

of bgudFS which employs all four optimizations at the

same time. We observe that on BOOKS, FLIGHTS,

TAXIS and WEBKIT queries, bgudFS clearly outper-

forms FS and all its variants that employ a single op-

timization; this is expected as the proposed techniques

optimize FS in an orthogonal manner and so, can be

effectively combined. Note that the performance gain

of bgudFS over the rest of the methods actually grows

with |R|/|S|. On the other hand, for GREEND and

INFECTIOUS queries, the method inherits the short-

comings of grouping, bucket indexing and decomposed

data layout which renders bgudFS the slowest method.

Our analysis on optimizing FS draws two key con-

clusions. First, the enhanced loop unrolling which builds

upon code transformation should be always applied;

uFS outperformed FS in almost all our test queries. Sec-

ond, the less selective and hence, more computationally

expensive an interval join is, the more effective group-

ing, bucket indexing and decomposed data layout will

be. Under these observations, the most efficient FS vari-

ant is either bgudFS or uFS, depending on the selectivity

of the interval join.

6.3 optFS: a self-tuning FS

To deal with this decision problem, we devised the optFS
method which operates in two phases. In the first phase,

optFS roughly estimates the average cost of a forward

scan; we rely on sampling and executing uFS, for this

purpose. In brief, we uniformly divide the domain into

a predefined number of ranges (equal to 50) and let uFS
run on a sample from both inputs (equal to 1h), in-

side every range; practically, a simplified and very fast

version of uFS, which only counts the extent of the con-
ducted forward scans, is executed. This sampling-based

process manages to approximate the real value for the

average forward scan extent with a 18% relative error,

on average. Although we could improve the accuracy by

increasing the number of ranges we divide the domain

and/or the sampling ratio, our goal is different. We are

interested only in estimating the order of magnitude for

the forward scans extent; in this context, the discussed

sampling-based process achieves almost an 100% ac-

curacy. Our tests has shown that when forward scans

cover only some tens (or a hundred in the worst case)

of intervals on average then grouping, bucket indexing

and the decomposed data layout will not payoff; i.e., the

case of GREEND and INFECTIOUS queries. Based on

this observation, optFS decides whether to run uFS or

bgudFS in its second phase. Note that the cost of the

first (sampling and decision) phase of optFS is negligi-

ble compared to the cost of the second phase (joining);

in our tests, sampling and decision making took only

3h of the total execution time by optFS, on average.
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Fig. 8: Comparisons: optFS against competition

6.4 optFS against the competition

After optimizing FS, we compare our optFS against pre-

vious work, i.e., the partition-based methods DIP, OIP
and the state-of-the-art plane sweep method LEBI. For

the competitor methods, we enforced traditional loop

unrolling whenever was possible. In addition, we in-

cluded the bgFS method from our previous publica-

tion [5]. Figure 8 reports the execution times; as ex-

pected, the time of all methods rises while increasing

the |R|/|S| ratio. Observe however that the plane sweep

based methods LEBI, bgFS-[5] and optFS always outper-

form their partition-based competitors, in most cases by

orders of magnitude with the exception of GREEND

queries where DIP performance is very close to LEBI.
This finding fully aligns with the analysis in [29], where

LEBI (and plane sweep based algorithms in general) was

shown to outperform OIP.

For optFS against LEBI, the tests clearly show that

we achieved our original goal. Optimized FS can be not

only competitive to but also faster than state-of-the-

art LEBI which, as discussed in Section 3.1, performs

no endpoint comparisons to produce the results. Also,

we made this possible without relying on a special data

structure such as the gapless hash map. In fact, optFS
outperforms LEBI in 16 of the 24 queries in Figure 8.

For the highly selective joins on GREEND and INFEC-

TIOUS, optFS (powered by uFS) is faster by a 70-82%

margin, while for the least selective joins on BOOKS

and WEBKIT, optFS (powered by bgudFS) outperforms

LEBI by a 13-36% margin. LEBI steadily outperforms

optFS only on FLIGHTS by a 14-22% margin while on

TAXIS the two methods have similar performance.

In terms of memory consumption, our preliminary

analysis in [5] showed that LEBI always incurs a larger

memory footprint than bgFS, due to the data replica-

tion from its endpoint indices and maintaining open

intervals inside two gapless hash maps. The same trend

holds compared to optFS. As a code transformation,

enhanced loop unrolling incurs no extra storage costs,

while the decomposed data layout results into a 19%

average increase over bgFS, when used, i.e., for queries

in BOOKS, FLIGHTS, TAXIS and WEBKIT.

In view of these results, our analysis in the rest of

this article will primarily focus on optFS as the most

efficient single-threaded method for interval joins.

7 Parallel Processing

We now shift our focus to the parallel processing of in-

terval joins that benefits from the existence of multiple

CPU cores in a machine. We discuss three different so-

lutions; (i) the case where no physical partitioning of

the input collections is employed, (ii) the hash-based

partitioning approach suggested in [29], and (iii) our

domain-based partitioning approach. For the latter two

approaches, we also discuss different strategies for effi-

ciently partitioning the input intervals in Section 8.

7.1 No-Partitioning Parallel Join

A straightforward approach to benefit from modern par-

allel hardware is to identify tasks of an interval join al-

gorithm that are independent to each other and hence,

can run in parallel. Every such task is assigned to a sep-

arate CPU core or thread. The input interval collections

are never physically partitioned (hence, the name of

the approach), which means that the processing threads

need to simultaneously traverse data structures stored

in shared main memory. A similar approach was used

in the past for relational equi-joins, e.g., in [4], where a

hash table is built in shared memory for the inner input

and then, every thread reads a chunk of the outer and

probes the shared hash table to produce join results.
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PARADIGM 1: Hash-based Partitioning
Input : collections of intervals R and S, number of

partitions k, hash function h
Output : all intersecting interval pairs (r, s) ∈ R× S

1 foreach interval r ∈ R do . partition R
2 v ← h(r); . apply hash function
3 add r to partition Rv;

4 foreach interval s ∈ S do . partition S
5 v ← h(s); . apply hash function
6 add s to partition Sv ;

7 foreach partition Ri of R do
8 foreach partition Sj of S do
9 compute Ri ./Sj ; . LEBI,FS and variants

Our experiments on single-threaded join computa-

tion clearly showed the advantage of plane sweep based

evaluation and optFS in specific. In what follows, we

discuss a no-partitioning parallel adaptation of FS and

its variants. 7 Recall from Section 3.2 that the algorithm

essentially involves two tasks; (i) advancing a sweep line

which stops at the start endpoint of all input intervals,

and (ii) for each position of the sweep line, performing

a forward scan to output join results. Despite travers-

ing the same data structures, i.e., those containing the

input collections, it is easy to confirm that the forward

scans are independent from each other. Therefore, we

design a parallel version of FS which follows a master-

slaves approach. We rely on a particular thread, which

we call the master, to advance the sweep line, i.e., to

execute Lines 4–5, 10–11 and 16 of Algorithm 2. When

the sweep line stops, the master assigns the current for-

ward scan to the next available thread (i.e., to a slave).

Slave threads operate in a completely independent and

asynchronous manner, executing instances of Lines 6–9

and 12–15 of Algorithm 2 in parallel. Note that all op-
timizations from Section 4 can be applied for parallel

FS. Enhanced loop unrolling, decomposed data layout

and bucket indexing are straightforward; for the latter,

every slave thread will practically execute Lines 7–14

and 17–24 of Algorithm 4. For the grouping optimiza-

tion, the master thread has to additionally create the

groups (Lines 6 and 16 of Algorithm 3) but every group

is then assigned to a slave thread which will first sort

the group intervals according to their end endpoint and

then perform the forward scan; in other words, a slave

thread executes an instance of Lines 7–13 and 17–23 of

Algorithm 3, receiving a group of intervals as input.

7.2 Hash-based Partitioning

In [29], Piatov et al. proposed a hash-based partition-

ing paradigm for parallelizing EBI (and its lazy LEBI

7 A similar approach can be employed for EBI/LEBI.

version), described by Paradigm 1. The evaluation of

the join involves two phases. First, the input collec-

tions are split into k disjoint partitions using the same

hash function h. During the second phase, a pairwise

join is performed between all {R1, . . . , Rk} partitions of

collection R and all {S1, . . . , Sk} of S; in practice, any

single-threaded interval join algorithm can be employed

to join two partitions. Since the partitions are disjoint,

the pairwise joins run independently of each other.

In [29], the intervals in the input collections are

sorted by their start endpoint before partitioning, and

then assigned to partitions in a round-robin fashion,

i.e., the i-th interval is assigned to partition h(i) = (i

mod k). This causes the active tuple setsAR,AS at each

instance of the EBI join to become small, because neigh-

boring intervals are assigned to different partitions. As

the cardinality of AR, AS impacts the run time of EBI,
each join in Line 9 is cheap. On the other hand, the in-

tervals in each partition span the entire domain, mean-

ing that the data in each partition are much sparser

compared to the entire dataset. This causes Paradigm 1

to have an increased number of endpoint comparisons

compared to a single-threaded algorithm, as k increases.

In particular, recall that the basic cost of FS and EBI
is the sweeping of the whole space, incurring |R| + |S|
and 2·(|R|+|S|) comparisons, respectively. Under hash-

based partitioning, k2 joins are executed in parallel, and

each partition carries |R|/k+|S|/k intervals. Hence, the

total basic cost becomes k·(|R|+|S|) and 2·k·(|R|+|S|),
respectively (i.e., an increase by a factor of k).

7.3 Domain-based Partitioning

Similar to Paradigm 1, our domain-based partitioning

paradigm for parallel interval joins (Paradigm 2) in-

volves two phases. The first phase (Lines 1–13) splits

the domain uniformly into k non-overlapping stripes; a

partition Rj (resp. Sj) is created for each domain stripe

tj . Let tstart, tend denote the stripes that cover r.start,
r.end of an interval r ∈ R, respectively. Interval r is

first assigned to partition Rstart created for stripe tstart.

Then, r is replicated across stripes tstart+1. . . tend. Dur-

ing the second phase (Lines 15–16), the domain-based

paradigm computes Rj ./ Sj for every domain stripe tj ,

independently. To avoid producing duplicate results, a

join result (r, s) is reported if at least one of the in-

volved intervals is not a replica. We can easily prove

that if for both r and s the start endpoint is not in

tj , then r and s should also intersect in the previous

stripe tj−1, therefore (r, s) will be reported by another

partition-join.

We show the difference between the two paradigms

using Figure 2; without loss of generality, assume that
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Fig. 9: Domain-based partitioning of the intervals in

Figure 2; the case of 4 domain stripes t1 . . . t4.

we are allocating 4 CPU threads for computing R ./ S.

To fully take advantage of parallelism, we assign each

partition-join to a separate thread. Hence, the hash-

based paradigm will first create
√

4 = 2 partitions for

each input, i.e., R1 = {r1}, R2 = {r2} for collection

R and S1 = {s1, s3, s5}, S2 = {s2, s4} for S, and then

evaluate pairwise joins R1 ./ S1, R1 ./ S2, R2 ./ S1 and

R2 ./ S2. In contrast, the domain-based paradigm will

first split the domain into the 4 disjoint stripes pictured

in Figure 9, and then assign and replicate (if needed)

the intervals into 4 partitions for each collection; R1 =

{r1}, R2 = {r̂1, r2}, R3 = {r̂1, r̂2}, R4 = {r̂1} for R and

S1 = {s1}, S2 = {s2, s3}, S3 = {ŝ3}, S4 = {ŝ3, s4, s5}
for S, where r̂j (resp. ŝj) denotes the replica of an

interval ri ∈ R (resp. si ∈ S) inside stripe tj . Last,

the paradigm will compute partition-joins R1 ./ S1,

R2 ./ S2, R3 ./ S3 and R4 ./ S4. Note that R3 ./ S3

will produce no results because all contents of R3 and

S3 are replicas, while R4 ./ S4 will only produce (r1, s4)

but not (r1, s3) which will be found in R2 ./ S2.

Our domain-based partitioning paradigm achieves a

higher degree of parallelism compared to Paradigm 1,

because for the same number of partitions it requires

quadratically fewer joins. Also, as opposed to previous
work that also applies domain-based partitioning (e.g.,

[9,24]), we avoid the production and elimination of du-

plicate join results. On the other hand, long lived in-

tervals that span a large number of stripes and skewed

distributions of start endpoints create joins of imbal-

anced costs. In what follows, we propose two orthogonal

techniques that deal with load balancing.

7.3.1 Mini-joins and Greedy Scheduling

Our first optimization of Paradigm 2 is based on decom-

posing the partition-join Rj ./ Sj for a domain stripe

tj into a number of mini-joins. The mini-joins can be

executed independently (i.e., by a different thread) and

bear different costs. Hence, they form tasks that can

be greedily scheduled based on their cost estimates, in

order to achieve load balancing.

Specifically, consider stripe tj and let tj .start and

tj .end be its endpoints. We distinguish between the fol-

PARADIGM 2: Domain-based Partitioning
Input : collections of intervals R and S, number of

partitions k
Output : all intersecting interval pairs (r, s) ∈ R× S

1 split domain into k stripes;
2 foreach interval r ∈ R do . partition R
3 tstart ← domain stripe covering r.start;
4 tend ← domain stripe covering r.end;
5 add r to partition Rstart;
6 foreach stripe tj inside (tstart, tend] do
7 replicate r to partition Rj ;

8 foreach interval s ∈ S do . partition S
9 tstart ← domain stripe covering s.start;

10 tend ← domain stripe covering s.end;
11 add s to partition Sstart;
12 foreach stripe tj inside (tstart, tend] do
13 replicate s to partition Sj ;

14 foreach domain stripe tj do
15 compute Rj ./ Sj ; . LEBI,FS and variants

lowing cases for an interval r ∈ R (resp. s ∈ S) which

is in partition Rj (resp. Sj):

(A) r starts inside tj , i.e., tj .start ≤ r.start < tj .end,

(B) r starts inside a previous stripe but ends inside tj ,

i.e., r.start < tj .start and r.end < tj .end, or

(C) r starts inside a previous stripe and ends after tj ,

i.e., r.start < tj .start and r.end ≥ tj .end.

Note that in cases (B) and (C), r is assigned to partition

Rj by replication (Lines 7–8 and 13–14 of Paradigm 2).

We use RA
j , RB

j , and RC
j (resp. SA

j , SB
j , and SC

j ) to

denote the mini-partitions of Rj (resp. Sj) that corre-

spond to the 3 cases above.

Under this, we can break partition-join Rj ./ Sj

down to 9 distinct mini-joins; only 5 of these 9 need to

be evaluated while the evaluation for 4 out of these 5

mini-joins is simplified. Specifically:

– RA
j ./ SA

j is evaluated as normal; i.e, as discussed

in Sections 3 and 4.

– For RA
j ./ SB

j and RB
j ./ SA

j , join algorithms only

visit end endpoints in SB
j and RB

j , respectively; SB
j

and RB
j only contain replicated intervals from pre-

vious stripes which are properly flagged to precede

all intervals starting inside tj , and so, they form the

sole group from SB
j and RB

j when the grouping op-

timization technique is used.

– RA
j ./ SC

j and RC
j ./ SA

j reduce to cross-products,

because replicas inside mini-partitions SC
j and RC

j

span the entire stripe tj ; hence, all interval pairs

are directly output as results without any endpoint

comparisons.

– RB
j ./ SB

j , RC
j ./ SB

j , RC
j ./ SB

j , RC
j ./ SC

j are not

executed at all, as intervals from both inputs start

in a previous stripe, and hence the results of these

mini-joins would be duplicates.
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Given a fixed number n of available CPU threads,

i.e., partitioning of the domain into k = n stripes, our

goal is to assign each of the 1 + 5 · (k − 1) in total

mini-joins8 to a thread, in order to evenly distribute

the load among all threads, or else to minimize the

maximum load per thread. This is a well known NP-

hard problem, which we opt to solve using a classic

(4/3− 1/3n)-approximate algorithm [17] that has very

good performance in practice. The algorithm greedily

assigns to the CPU thread with currently the lowest

load the next largest job. In details, we first estimate the

cost of each mini-join; a straightforward approach for

this is to consider the product of the cardinalities of the

involved mini-partitions. Next, for each available thread

p, we define its bag bp that contains the mini-joins to

be executed and its load `p by adding up the estimated

cost of the mini-joins in bp; initially, bp is empty and

`p = 0. We organize the bags in a min-priority queue

Q based on their load. Last, we examine all mini-joins

in descending order of their estimated cost. For each

mini-join say RA
j ./ SA

j , we remove bag bp at the top

of Q corresponding to thread p with the lowest load,

we append RA
j ./ SA

j to bp and re-insert the bag to Q.

This greedy scheduling algorithm terminates after all

mini-joins are appended to a bag.

Discussion and implementation details. In prac-

tice, the greedy scheduling algorithm replaces an atomic

assignment approach (Lines 15–16 of Paradigm 2) that

would schedule each partition-join as a whole to the

same thread. The breakdown of each partition-join task

into mini-joins that can be executed at different CPU

threads greatly improves load balancing in the case

where the original tasks have big cost differences.

7.3.2 Adaptive Partitioning

Our second adaptive partitioning technique for load bal-

ancing re-positions the borders between the {t1, . . . , tk}
stripes, aiming at making the costs of all partition-joins

on Line 16 in Paradigm 2 similar. Assuming a 1-1 as-

signment of partition-joins to CPU threads, load bal-

ancing can be achieved by finding the optimal k parti-

tions that minimize the maximum partition-join cost.

This can be modeled as the problem of defining a k-bins

histogram with the minimum maximum error at each

bin.9 This problem can be solved exactly in PTIME

with respect to the domain size, with the help of dy-

8 The only possible mini-join for the first stripe is RA
j ./

SA
j , as it is not possible for it to contain any replicas.
9 We assume that there is a function to compute/update

the cost of each partition-join in constant time; this function
should be monotonic with respect to the sub-domain covered
by the corresponding stripe, which holds in our case.

namic programming [20]; however, in our case the do-

main of the intervals is huge, so we resort to a heuristic

that gives a good solution very fast. The time taken

for partitioning should not dominate the cost of the

join (otherwise, the purpose of a good partitioning is

defeated). Our heuristic is reminiscent to local search

heuristics for creating histograms in large domains that

do not have quality guarantees but compute a good so-

lution in practice within short time [30]. Note that, in

practice, the overall execution time is dominated by

the most expensive partition-join. Hence, given as in-

put an initial set of stripes and partitions (more details

in the next paragraph), we perform the following steps.

First, the CPU thread or equivalently the stripe tj that

carries the highest load is identified. Then, we reduce

tj ’s load (denoted as `j) by moving consecutive inter-

vals from Rj and Sj to the corresponding partitions

of its neighbour stripe with the highest load, i.e., ei-

ther tj−1 or tj+1, until `j−1 > `j or `j+1 > `j holds,

respectively. Intuitively, this procedure corresponds to

advancing endpoint tj .start or retreating tj .end. Last,

we continuously examine the thread with the highest

load until no further moving of the load is possible.

The implementation of this heuristic raises two im-

portant challenges; (i) how we can quickly estimate the

load on each of the n = k available CPU threads and

(ii) what is the smallest unit of load (in other words, the

smallest number of intervals) to be moved in between

threads/stripes. To deal with both issues we build his-

togram statistics HR and HS for the input collections

online, without extra scanning costs. In particular, we

create a much finer partitioning of the domain by split-

ting it to a predefined number ξ of granules with ξ being

a large multiple of k, i.e., ξ = α · k, where α >> 1. For

each granule g, we count the number of intervals HR[g]

and HS [g] from R and S respectively that start inside

g. We define every initial stripe tj as a set of consec-

utive α granules; in practice, this partitions the input

collections into stripes of equal widths as our original

framework. Further, we select a granule as the smallest

unit (number of intervals) to be moved between stripes.

The load on each thread depends on the cost of the cor-

responding partition-join. This cost is optimized if we

break it down into mini-joins, as described in Section

7.3.1, because numerous comparisons are saved. Em-

pirically, we observed that the cost of the entire bundle

of the 5 mini-joins for a stripe tj is dominated by the

first mini-join, i.e., RA
j ./ SA

j , the cost of which can

be estimated by |RA
j | · |SA

j |. Hence, in order to calcu-

late |RA
j | (resp. |SA

j |), we can simply accumulate the

counts HR[g] (resp. HS [g]) of all granules g ∈ tj . As

the heuristic changes the boundaries of a stripe tj by

moving granules to/from tj , cardinalities |RA
j |, |SA

j | and
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the join cost estimate for tj can be incrementally up-

dated very fast.

8 Strategies for Parallel Partitioning

We next elaborate on how the partitioning process can

benefit from modern parallel hardware. We discuss three

strategies applicable on both the hash-based and the

domain-based partitioning; in the next section, we care-

fully evaluate these strategies for each partitioning type.

As a common feature, all strategies operate in three

phases. During the first phase, all available CPU cores

or threads are employed to calculate the cardinality of

each |Rj | and |Sj | partition. During the second phase,

the threads are employed to allocate the space required

to store every partition in main memory and then phys-

ically partition the input collections. Finally, again all

available threads are used to sort and index (if needed)

the input partitions, depending on the interval join al-

gorithm to be used.10 In the following, we detail the

first two phases for each partitioning strategy.

One2One. The first strategy was used in [29] for hash-

based partitioning but can be straightforwardly applied

for the domain-based as well. The idea is to exclu-

sively assign every Rj (resp. Sj) partition to a single

thread.11 Under this, the thread executes all phases of

the partitioning process forRj . As every partition of the

collection is assigned to exactly one thread, the entire

partitioning process is essentially divided into smaller

independent tasks which run in parallel without the

need of synchronization. Strategy 1 illustrates a high-

level pseudo-code of One2One. After initiating c parallel

threads in Line 1, every thread executes the first and

the second phase of the partitioning independently in

Lines 3–8. Consider thread j. During the first phase in

Lines 3–5, thread j is assigned k
c partitions for the input

collection R, where k is the number of requested parti-

tions and c is the number of available threads. Specif-

ically, the thread gets all partitions in the range from(
(j − 1) · kc + 1

)
to
(
j · kc

)
Then, it scans collection R to

count how many intervals will be contained inside its

assigned partitions. Last, during the second phase in

Lines 6–8, every thread allocates the space needed to

store their assigned partitions and then, scans for the

second time the input collection to fill these partitions.

10 Recall that every partition may take part in multiple
joining tasks. Hence, we choose to introduce a separate sort-
ing/indexing phase instead of having this step integrated in-
side the join algorithm.
11 In general, the number of partitions per input may exceed
the number of available threads in which case, every thread
is responsible for multiple partitions.

STRATEGY 1: One2One
Input : collection of intervals R, number of

partitions k, number of threads c
Output : partitions {R1, . . . , Rk}
Variables : counters {|R1|, . . . , |Rk|}

1 create c parallel threads;
2 foreach thread j do . executed in parallel

3 assign the j-th set of k
c partitions to the thread;

4 read intervals from R;
5 calculate counters {|R(

(j−1)·k
c
+1
)|, . . . , |R(

j· k
c

)|};
6 allocate memory space for assigned partitions;
7 read intervals from R;
8 fill partitions {R(

(j−1)· k
c
+1
), . . . , R(

j· k
c

)};
9 return {R1, . . . , Rk};

STRATEGY 2: Temps
Input : collection of intervals R, number of

partitions k, number of threads c
Output : partitions {R1, . . . , Rk}
Variables : global counters {|R1|, . . . , |Rk|}, local

partitions {Rj
1, . . . , R

j
k} and local counters

{|Rj
1|, . . . , |R

j
k|} for every parallel thread j

1 create c parallel threads;
2 foreach thread j do . executed in parallel

3 read the j-th chunk of
|R|
c intervals from R;

4 calculate local counters {|Rj
1|, . . . , |R

j
k|};

5 allocate memory space for {Rj
1, . . . , R

j
k};

6 read the j-th chunk of
|R|
c intervals from R;

7 fill local partitions {Rj
1, . . . , R

j
k};

8 wait until all threads finished; . synchronization
9 foreach partition Ri do . executed in parallel

10 calculate global counter |Ri| =
∑c

j=1 |R
j
i |;

11 allocate memory space;

12 Ri ←
⋃c

j=1 Rj
i ; . unify local partitions

13 return {R1, . . . , Rk};

Despite its simplicity, the One2One strategy has two

important drawbacks. First, it requires multiple scans

over the input; to be precise, the collection is scanned

2·c times. Second, the strategy cannot cope with skewed

data distributions; essentially, the cost of the entire par-

titioning process is dominated by the cost of processing

the largest partition. In what follows, we discuss two

partitioning strategies that address these issues.

Temps. The key idea for fast partitioning is to assign

parts of the input collection to the available threads

instead of entire partitions. Under this, every thread

reads a chunk from the input containing |R|c intervals,

and builds a temporary local partitioning. The input

chunks should be disjoint such that the parallel threads

operate completely independently. Every thread per-

forms a first scan of its assigned intervals to count how

large its local partitions will be, then allocates the re-

quired space in main memory and reads again the inter-

vals to fill the partitions. Finally, after all threads have

finished, the local partitionings are unified into the final

result as the last step.
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STRATEGY 3: Divs
Input : collection of intervals R, number of

partitions k, number of threads c
Output : partitions {R1, . . . , Rk}
Variables : global counters {|R1|, . . . , |Rk|}, and local

counters {|Rj
1|, . . . , |R

j
k|} for every parallel

thread j

1 create c parallel threads;
2 foreach thread j do . executed in parallel

3 read the j-th chunk of
|R|
c intervals from R;

4 calculate local counters {|Rj
1|, . . . , |R

j
k|};

5 wait until all threads finished; . synchronization
6 foreach partition Ri do . executed in parallel

7 calculate global counter |Ri| =
∑c

j=1 |R
j
i |;

8 allocate memory space;
9 divide partition into c logical parts;

10 wait until all threads finished; . synchronization
11 foreach thread j do . executed in parallel

12 read the j-th chunk of
|R|
c intervals from R;

13 fill j-th part of each partition in {R1, . . . , Rk};
14 return {R1, . . . , Rk};

Strategy 2 illustrates a high-level pseudo-code of

Temps. In Lines 2–7, every thread scans (two times) its

assigned chunk of the input collection to create a local

partitioning. Specifically, thread j gets the j-th chunk

of |R|c input intervals and produces local partitioning

{Rj
1, . . . , R

j
k}; notice that local partitionings contain

the same number of partitions as the final result. To

count the cardinality of its local partitions, the thread

maintains private local counters {|Rj
1|, . . . , |R

j
k|}. After

all local partitionings are built (synchronization barrier

in Line 8), Temps unifies them by copying local par-

titions to a contiguous space allocated in main mem-

ory for the final partitions, in Lines 9–12. Both the

hash-based and the domain-based partitioning assign

every interval to exactly one local partition; the same

holds for the replicas in case of domain-based. Under

this, the cardinality for each final partition Ri is calcu-

lated as |Ri| =
∑c

j=1 |R
j
i | and the partition is defined

as R1
i

⋃
. . .
⋃
Rc

i , where c is the total number of parallel

threads and local partitionings. Last, to accelerate this

unification step, the Temps strategy assigns the compu-

tation of every partition Ri to the next available thread

in a round robin fashion.

Compared to One2One, the Temps strategy scans

the entire input collection R only twice as every thread

now operates on a different chunk of R. In addition, as

R’s chunks are equi-sized, i.e., all contain at most |R|c in-

tervals, the partitioning load is better distributed to the

available threads. But, Temps still exhibits important

shortcomings. First, for every partition Ri, the strategy

allocates twice the required space in main memory, i.e.,

to store both its corresponding local partitions and Ri

itself. Second, the strategy introduces an extra costly

step, i.e., the unification of local partitioning. Also, the

cost of this last step is dominated by the largest parti-

tion which is again computed by a single thread.

Divs. To address these shortcomings, we next discuss

our last strategy. Strategy Divs shares the same key idea

to Temps, i.e., every thread j processes independently

the j-th chunk of |R|c input intervals. But, instead of

building a temporary local partitioning, the thread di-

rectly updates the final partitions. For this purpose, the

strategy logically divides every final partition Ri into c

parts, i.e., one for each available thread. The extent of

each Rj
i part is determined by local counters |Rj

i |, which

are computed similar to strategy Temps. With this di-

vision, each thread independently fills a dedicated part

of Ri’s data structure in memory without the need of

locking or any type of synchronization.

Strategy 3 illustrates a high-level pseudo-code of

Divs. Lines 2 and 3 are identical to Strategy 2, i.e., a first

scan of the input collection determines local counters

{|Rj
1|, . . . , |R

j
k|} for each thread j. After local counters

are computed (synchronization barrier in Line 5), Divs
allocates the necessary space in main memory to build

every Ri partition (Lines 7–8) and also, logically divides

Ri into c parts using its local counters (Line 9). Finally

after this preparation step is finished for all partitions

(synchronization barrier in Line 10), every thread scans

for the second time its assigned input intervals and fills

its dedicated part inside the data structure of every

partition, in Lines 10–13.

Compared to Temps, the Divs strategy does not al-

locate extra space for every partition; at the same time,

the costly unification step of Temps is entirely avoided.

In addition, the largest partition which could become

the bottleneck for both strategies One2One and Temps
is now filled by multiple threads in parallel achieving a

better load balancing.

9 Experiments on Parallel Processing

Last, we present the second part of our experimental

evaluation, which focuses on the parallel computation of

interval joins. In view of the results for single-threaded

processing in Section 6, we next focus on optFS.

9.1 Setup

The experiments were conducted on the same machine

used for the single-threaded tests in Section 6 with an

identical setup, i.e., XOR workload, all data stored

in main memory. Further, we chose to activate hyper-

threading which allowed us to run up to 40 threads and

used OpenMP for multi-threaded processing. Besides

varying the |R|/|S| ratio inside {0.25, 0.5, 0.75, 1}, we
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Fig. 10: Tuning hash-based partitioning: strategies,

|R| = |S| and 20 threads.

also increase the number of available parallel threads

inside {5, 10, 15, 20, 25, 30, 35, 40}. We indicate the ac-

tivation of hyper-threading by an h subscript, e.g., 25h.

Last, for the adaptive partitioning, we conducted a se-

ries of tests to determine the multiplicative factor α

which controls the number of granules in the fine par-

titioning of the domain (see Section 7.3.2). To avoid

significantly increasing the partitioning cost, we ended

up setting α = 1000 when the number of threads is less

than 10, and α = 100 otherwise.

9.2 Tuning Hash-based Partitioning

We first tune the hash-based paradigm. [29] sorts ev-

ery collection prior to partitioning. We experimented

with a variant of the paradigm which does not include

such a pre-sort step and proved always faster. Hence,

in the following we run our variant of the hash-based

paradigm. Our analysis investigates which is the best

strategy for the parallel partitioning of the inputs and

how to select the number of partitions to be created.

partitioning sorting indexing joining
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Fig. 11: Tuning hash-based partitioning: # partitions,

|R| = |S| and 20 threads.

9.2.1 Partitioning Strategies

Figure 10 reports the partitioning time of the One2One,
Temps and Divs strategies while varying the number

of partitions on our six datasets. For all tests, we set

|R| = |S| and used up to 20 parallel threads to parti-

tion the input collections. The results clearly show that

Divs is both the most efficient and the most robust par-

titioning strategy, i.e., its time is little affected by the

increase in the number of partitions. One2One is com-

petitive to Divs only if each collection is split into 20

or more partitions. Recall that One2One assigns each

partition to exactly one thread, so with less than 20

partitions, some of the 20 available threads are never

used. A key factor for understanding the differences in

the performance of the strategies is the size of the in-

puts (see Table 1). GREEND and TAXIS contain more

than 100m intervals; for these datasets, One2One is al-

ways slower than both Temps and Divs due to scanning

these big inputs multiple times while Temps is always

slower than Divs due to creating and unifying local par-

titions. The rest of the datasets contain 2m or less in-
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tervals. Provided that at least 20 partitions are created,

One2One is always faster than Temps because these par-

titions contain very few intervals and the overhead from

local partitioning in Temps becomes increasingly higher

by the number of partitions.

9.2.2 Number of Partitions

Piatov et al. [29] suggested that the hash-based paradigm

performs at its best when each input is split into
√
n

partitions, where n is the number of available threads.

Under this, every available thread is assigned exactly

one of the n in total partition-joins. Although we used

this heuristic in our preliminary work [5], we investigate

here in detail the impact of the number of partitions.

Figure 11 reports the breakdown of optFS execu-

tion time while varying the number of partitions in

each collection from 1 to 1,000; note that the number

of available parallel threads is fixed to 20. As expected,

there is a tradeoff between the number of partitions and

the total execution time. Initially, optFS benefits from

splitting each input into more partitions but the algo-

rithm slows down when the number of partitions ex-

ceeds a particular value. However, our tests also unveil

a correlation between the number of partitions and the

selectivity of the join. For the highly selective queries

in GREEND and INFECTIOUS, the execution time

of optFS is minimized when the number of partitions

equals almost the number of available threads. On the

other hand, for queries of low or medium selectivity, the

heuristic from [29] is effective, i.e., the number of par-

titions should be set to b
√

20c = 4. To understand this

behaviour, observe the time breakdown in Figures 11(c)

and (d) when the number of partitions is set below 20,
especially equal to 4. Different from all other cases, the

total execution time is dominated by the sorting cost;

the actual joining phase is very cheap due to the low

number of results. Essentially, we can enhance sorting

by splitting the inputs into more partitions which cre-

ates smaller sorting tasks to run in parallel.

9.3 Tuning Domain-based Partitioning

We next tune our domain-based paradigm. Besides de-

termining the best strategy for parallel partitioning and

the number of partitions, we also study the impact of

our load balancing techniques from Section 7.3.

9.3.1 Partitioning Strategies

Figure 12 reports the domain-based partitioning time

for strategies One2One, Temps and Divs while varying

the number of partitions; for the tests, we set again
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Fig. 12: Tuning domain-based partitioning: strategies,

|R| = |S| and 20 threads.

|R| = |S| and used up to 20 parallel threads. Also, adap-

tive partitioning from Section 7.3.2 was deactivated.

Similar to Section 9.2.1, we observe that Divs is the

most efficient and most robust strategy for parallel par-

titioning; on the largest datasets GREEND and TAXIS,

Temps is competitive to Divs but still slower. However,

different to our hash-based analysis, One2One is clearly

the slowest strategy in all cases; its time is severely

affected by the increase in the number of partitions

exhibiting also a “staircase” pattern (more obvious in

Figures 12(c) and (e)). The difference in One2One’s be-

haviour is due to the higher processing cost per interval

incurred by the domain-based partitioning compared to

hash-based. This cost is amplified by the increase in the

number of partitions. Recall that for hash-based parti-

tioning, we only need to hash the start endpoint of ev-

ery interval. In contrast, for domain-based partitioning

we also need to replicate an interval to all overlapping

stripes; the replication cost naturally increases with the

number of partitions. Regarding the “staircase” pat-

tern, notice that One2One’s time essentially goes up

every 20 partitions. Consider for example the increase
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Fig. 13: Tuning domain-based partitioning: # parti-

tions, |R| = |S| and 20 threads.

from 20 to 40 partitions. At first, every thread builds

exactly one partition. When we increase the number of

partitions to 21, this extra partition will be assigned

as a second task to one of the available threads. The

total time of this thread will increase and dominate the

overall partitioning time Adding more partitions will

not change this overall time because there still threads

assigned one partition unless the total number of par-

titions grows higher than 40.

9.3.2 Number of Partitions

In [5], we always set the number of partitions equal to

the number of threads such that each thread is assigned

exactly one partition-join. To confirm the effectiveness

of this heuristic, we measure the runtime of optFS under

the domain-based paradigm while varying the number

of partitions from 1 to 1,000. Similar to Section 9.2.2,

the number of available threads is set to 20.

Figure 13 reports the results of our tests. The ex-

pected tradeoff between the execution time and the

number of partitions from each collection is again ob-

served. But, different from the hash-based paradigm,

optFS under the domain-based performs at its best when

the number of partitions equals the number of available

threads. An exception arises for the very selective joins;

in INFECTIOUS, the lowest execution time is observed

for around 100 partitions per input while in GREEND

for over 100. Nevertheless, we can safely use the same

heuristic even in these cases because (i) the average ex-

ecution time for INFECTIOUS joins is extremely low

(below 20 msec) even for 20 partitions while (ii) for

GREEND, the time does not significantly drop when

the number of partitions exceeds 20.

9.3.3 Load Balancing

We now evaluate the load balancing achieved by the op-

timizations of domain-based partitioningof Section 7.3.

To save space, we only show the results on WEBKIT;

similar conclusions can be drawn for join queries on the

other datasets. Apart from the overall execution time of

each join, we also measured the load balancing among

the participating CPU threads. Let set L = {`1 . . . `n}
be the measured time spent by each of the available n

threads; we define the average idle time as:

1

n

n∑
j=1

{max(L)− `j}

A high average idle time means that the threads are

under-utilized in general, whereas a low average idle

time indicates that the load is balanced.

We experimented by activating or deactivating the

mini-joins breakdown denoted by mj (Section 7.3.1),

greedy scheduling denoted by greedy (Section 7.3.1),

and adaptive partitioning denoted by adaptive (Section

7.3.2). We use the term atomic to denote the assign-
ment of each partition-join or the bundle of its corre-

sponding 5 mini-joins to the same thread, and uniform

to denote the (non-adaptive) uniform initial partition-

ing of the domain. We tested the following setups: 12

(1) uniform/atomic is the baseline domain-based para-

digm of Section 7.3 with all load balancing opti-

mization techniques deactivated;

(2) atomic/adaptive is an extension to the baseline that

employs only the adaptive partitioning;

(3) uniform/mj+atomic splits each partition-join of the

baseline into 5 mini-joins which are all executed by

the same CPU thread;

(4) adaptive/mj+atomic first applies the adaptive par-

titioning technique and then splits each partition-

join into 5 mini-joins to be all executed by the same

thread;

12 Based on our analysis in Section 9.3.2, greedy/uniform or
greedy/adaptive setups are meaningless since the number of
partitions equals the number of available CPU threads.
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Fig. 14: Tuning domain-based partitioning: load bal-

ancing, optFS on WEBKIT.

(5) uniform/mj+greedy splits each partition-join of the

baseline into 5 mini-joins which are greedily dis-

tributed to the available threads;

(6) adaptive/mj+greedy employs all optimizations.

Figures 14(a), (c) report the total execution time for

each setup (1)–(6), while Figures 14(b), (c) report the

ratio of the average idle time over the execution time.

We observe the following. First, setups (2)–(6) all

manage to enhance the parallel computation of the join.

Their execution time is lower than the time of the uni-

form/atomic baseline. The most efficient setups always

include the mj+greedy combination regardless of acti-

vating adaptive partitioning or not. In practice, split-

ting every partition-join into 5 mini-joins creates mini-

jobs of varying costs (recall that 2 of them are cross-

products and other 2 are also quite cheap), which facil-

itates the even partitioning of the total join cost to pro-

cessors. For example, if one partition is heavier overall

compared to the others, one thread would be dedicated

to its most expensive mini-join and the other mini-

joins would be handled by less loaded CPU threads.

Table 7: Setups for partitioning-based computation.

hash-based domain-based

partitioning
# partitions

uFS: # threads
# threads

bgudFS: b
√

# threadsc
strategy Divs Divs
adaptive - yes

joining

mini-joins
- yes

breakdown
greedy

- yes
scheduling

Also, notice that the mj optimization is beneficial even

when the 5 defined mini-joins are all executed by the

same CPU thread (i.e., uniform/mj+atomic), although

the benefit is small compared to the other setups. This

is because breaking down a partition-join into 5 mini-

joins greatly reduces the overall cost of the partition-

join (again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning appears to have a smaller im-

pact compared to the other two optimizations. Among

the setups that do not employ the greedy scheduling,

adaptive/atomic ranks first (both in terms of the exe-

cution time the average idle time ratio) but when ac-

tivated on top of the uniform/mj+greedy setup, adap-

tive partitioning enhances the join computaion when

the number of threads is low, below 20; notice how

faster is the adaptive/mj+greedy setup compared to

uniform/mj+greedy in case of 5 available CPU threads.

Overall, we observe that (i) the mj optimization

greatly reduces the cost of a partition-join and adds

flexibility in load balancing, (ii) the uniform/mj+greedy

and adaptive/mj+greedy setups perform very well in

terms of load balancing, by reducing the average idle

time of any thread to below 20% of the total execution

time in almost all cases (|R|/|S| = 0.25 and when less

than 15 threads are available for uniform/mj+greedy

are the only exceptions).

9.4 Comparisons

Table 7 summarizes the best setup for optFS under

the hash-based and the domain-based paradigms. Both

paradigms use Divs to efficiently partition the inputs.

For hash-based, we set the number of partitions on the

selectivity of the join, i.e., depending on whether optFS
acts as uFS or bgudFS; for domain-based, we always

set the number of partitions equal to the number of

available CPU threads. Also, to take full advantage of

all proposed load balancing optimizations, we setup the

domain-based paradigm as adaptive/mj+greedy.

We next compare all three approaches for the par-

allel computation of interval joins. 13 We first report in

13 We also tested a hybrid that applies domain-based parti-
tioning and uses no-partitioning for every partition-join, but,
this approach was always slower than original no-partitioning.
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Fig. 15: Comparing parallel processing solutions: optFS
speedup for |R| = |S|.
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Fig. 16: Comparing parallel processing solutions: optFS
running time for 20 threads.

Figure 15 the speedup over the single-threaded optFS
(Section 6), while varying the number of available CPU

threads; to save space, we omit the results on FLIGHTS

and INFECTIOUS since the findings are identical to

TAXIS and GREEND, respectively. Overall, we observe

that the domain-based paradigm is clearly the most

efficient approach, being able to achieve the highest

speedup in all cases. In fact, the performance advantage

of the domain-based paradigm grows by the number of

available threads. This is because the queries benefit

increasingly more from domain-based’s ability to sig-

nificantly reduce the number of endpoint comparisons

conducted. In contrast, the number of comparisons un-

der the hash-based paradigm increases, compared even

to single-threaded optFS, as the number of available

threads goes up.14 Our tests also reveal the role of join

selectivity. For the highly selective queries in GREEND

and INFECTIOUS, the hash-based paradigm always

outperforms no-partitioning, but for the low selectiv-

ity joins in BOOKS and WEBKIT, no-partitioning is

competitive; in fact, for WEBKIT, it achieves always

the second highest speedup. For queries of medium se-

lectivity, i.e., in FLIGHTS and TAXIS, no-partitioning

is able to incur a speedup only when up to 5 paral-

lel threads are employed. To understand the behaviour

of no-partitioning optFS, we need to discuss two im-

portant shortcomings stemming from its master-slaves

approach. The first problem is thread starvation; es-

sentially, the master thread cannot create forward scan

tasks fast enough for the slaves to run. This is the case

with highly selective queries, where the forward scans

are too short and hence cheap, as Figure 6 shows. The

second problem is the high number of cache misses in-

curred by all threads scanning the same data structures

in main memory. This problem is amplified when in-

creasing the number of CPU threads used as slaves.

Finally, we report in Figure 16 the total execution

time for each approach while varying the |R|/|S| ra-

tio of the input collections; for these tests, we used up

to 20 threads. As expected all approaches are affected

by increasing the input size; their execution time rises.

Nevertheless, the domain-based paradigm outperforms

both the hash-based and no-partitioning in every test.

10 Conclusions and Future Work

In this paper, we targeted the efficient in-memory com-

putation of interval overlap joins. Under single-threaded

evaluation, we studied FS, a simple and efficient algo-

rithm based on plane sweep that does not rely on any

special data structures. We proposed four novel opti-

mizations for FS that greatly accelerate the algorithm in

practice. Our experimental analysis showed that a self-

tuning version of FS which automatically selects and ap-

plies the most appropriate optimizations is competitive

or even faster than the state-of-the-art. For parallel join

evaluation, we proposed (i) a master-slaves approach

that does not physically partition the inputs and (ii)

14 Results on endpoint comparisons can be found in our pre-
liminary analysis [5].
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a domain-based partitioning computation framework.

Under the latter, each partition-join is broken down to

five independent mini-joins which can be greedily as-

signed to the available CPU threads achieving a high

degree of load balancing. Our experiments showed that

our domain-based partitioning framework for parallel

joins significantly outperforms both our no-partitioning

approach and the hash-based framework of [29] while

also scaling well with the number of available threads.

In the future, we plan to study interval joins in stream

processing. Also, we intend to investigate novel index-

ing structures for interval queries and joins.
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