
Parallel In-Memory Evaluation of Spatial Joins
Dimitrios Tsitsigkos

Information Management Systems Institute
Athena RC, Athens, Greece

dtsitsigkos@imis.athena-innovation.gr

Panagiotis Bouros
Institute of Computer Science

Johannes Gutenberg University Mainz, Germany
bouros@uni-mainz.de

Nikos Mamoulis
Department of Computer Science and Engineering

University of Ioannina, Greece
nikos@cs.uoi.gr

Manolis Terrovitis
Information Management Systems Institute

Athena RC, Athens, Greece
mter@imis.athena-innovation.gr

ABSTRACT
We study the in-memory and parallel evaluation of spatial joins,
by tuning a classic partitioning based algorithm. Our study shows
that, compared to a straightforward implementation of the algo-
rithm, performance can be improved signi�cantly. We also show
how to select appropriate partitioning parameters based on data
statistics, in order to tune the algorithm for the given join inputs.
Our parallel implementation scales gracefully with the number of
threads reducing the cost of the join to at most one second even
for join inputs with tens of millions of rectangles.

CCS CONCEPTS
• Information systems→ Join algorithms; Spatial-temporal
systems; Parallel and distributed DBMSs;

KEYWORDS
Spatial Join, In-memory Data Management, Parallel Processing

ACM Reference Format:
Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Ter-
rovitis. 2019. Parallel In-Memory Evaluation of Spatial Joins. In 27th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’19), November 5–8, 2019, Chicago, IL, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3347146.3359343

1 INTRODUCTION
The spatial join is a well-studied fundamental operation. Given two
collections of spatial objects R and S , the spatial intersection join
returns all (r , s) pairs, such that r 2 R, s 2 S and r and s have at least
one common point. Due to the potentially complex geometry of
the objects, intersection joins are typically processed in two steps.
The �lter step applies on spatial approximations of the objects,
typically their minimum bounding rectangle (MBR). For each pair
of object MBRs that intersect, the object geometries are fetched

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00
https://doi.org/10.1145/3347146.3359343

and compared in a re�nement step. Similar to the vast majority of
previous work [7], we focus on the �lter step.

A wide range of spatial join algorithms have been proposed in
the literature [3]. Given the fact that main memory chips become
bigger and faster, in-memory join processing has recently received
a lot of attendance [8]. In addition, given that commodity hardware
supports parallel processing, multi-core join evaluation has also
been the focus of recent research. Hence, in this paper, we target the
parallel in-memory evaluation of spatial joins on modern hardware.

Our focus is the optimization of the simple, but powerful parti-
tioning-based spatial join (PBSM) algorithm [9]. PBSM is shown to
perform well in previous studies [8] and used by most distributed
spatial data management systems [1, 6, 11]. In a nutshell, both
datasets are �rst partitioned using a regular grid; each tile (cell)
of the grid gets all rectangles that intersect it. Each tile de�nes a
smaller spatial join task. These tasks are independent and can be ex-
ecuted in parallel, assigned to di�erent threads or even to di�erent
machines in distributed evaluation. Typically a plane sweep algo-
rithm based on forward scans [4] is used to process each task. For
example, consider the two sets of MBRs of Figure 1a. Partitioning
the rectangles using a 3 ⇥ 3 grid creates 9 independent spatial join
tasks, one for each tile. Note that some rectangles may be replicated
to multiple tiles. Because of this, some pairs of rectangles may be
found to intersect in multiple tiles; e.g., r1 intersects s1 in tiles (0,0)
and (0,1). Duplicate join results can be avoided by reporting a pair
of rectangles only if a pre-determined reference point (typically,
the top-left corner) of the intersection region is in the tile [5]; e.g.,
(r1, s1) is only reported by tile (0,0).

Currently, there is no comprehensive study so far on how the
number and type of partitions should be de�ned. In this paper, we
evaluate a 1D partitioning that divides the space into stripes (see
Figure 1b), as opposed to the classic 2D partitioning, which uses a
grid. Further, we investigate, for each partition, the best direction of
the sweep line. Finally, we show how both the partitioning and the

r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0

1

2

0 1 2
r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0 1 2 3

r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0

1

2

0 1 2
r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0 1 2 3

Figure 1: Example of PBSM: (a) 2D and (b) 1D partitioning

https://doi.org/10.1145/3347146.3359343
https://doi.org/10.1145/3347146.3359343

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

joining phases of the algorithm can be parallelized. Based on our
tests, the 1D partitioning results in a more e�cient algorithm. Also,
increasing the number of partitions improves the performance of
the algorithm, up to a point where adding more partitions starts
having a negative e�ect. We present a number of empirical rules
driven from data statistics (globally and locally for each partition)
that can guide the selection of the algorithm’s parameters. Finally,
we evaluate the performance of the parallel version of the algorithm
and show that it scales gracefully with the number of cores.

2 TUNING PBSM
PBSM is a popular spatial join algorithm for the following reasons:

• PBSM assumes no preprocessing or indexing of the data, so it
can be applied on dynamically generated spatial data.

• The partitions de�ne independent join tasks that can easily be
distributed and/or parallelized.

• The number of join tasks is the same as the number of partitions.
• Producing duplicate results can be easily avoided.
• Implementing this approach is fairly easy.
• Previous studies [8] have shown that the performance of PBSM
can hardly be beaten by more sophisticated approaches based
on indexing or adaptive partitioning.

In the following, we explore the directions along which we can
tune PBSM to improve its performance. We assume that PBSM uses
the plane sweep algorithm of [4] for each partition-partition join.

2.1 One-dimensional Partitioning
The default partitioning approach for PBSM is a 2D grid, as shown
in Figure 1a. Still, the same algorithm can be applied if we partition
the data space in 1D stripes, as shown in Figure 1b. The stripes can
be horizontal or vertical. Such a partitioning was considered by
an external memory plane sweep join algorithm [2]; however, the
objective of the partitioning there was to de�ne the stripes in a
way such that the “horizon” of the sweep line (which runs along
the axis of the stripes) �ts in memory. Since in this paper, we deal
with in-memory joins, we do not consider this factor, but we study
how the number of partitions a�ects the cost of the join.

2.2 Duplicate Elimination
Dittrich and Seeger [5] presented a simple but e�ective approach for
eliminating duplicate results in PBSM. A rectangle pair is reported
by a partition-partition join only if the top-left corner of their
intersection area is inside the spatial extent of the partition. The
pair of intersecting rectangles (r1, s1) in Figure 1a can be found in
both tiles (0,0) and (0,1). However, this result will only be reported
in tile (0,0), which contains the top-left corner of the intersection.
Hence, for each rectangle pair found to intersect, a duplicate test
is performed. Let [r .xl , r .xu] and [r .�l , r .�u] be the projections of
rectangle r on the x and � axis, respectively. Let [T .xl ,T .xu] and
[T .�l ,T .�u] be the corresponding projections of a tile. The duplicate
test for pair (r , s), found to intersect in tile T , is the condition:

max{r .xl , s .xl } � T .xl ^max{r .�l , s .�l } � T .�l (1)

Application to 1D partitioning. For the 1D partitioning, the du-
plicate test needs to apply a single comparison (as opposed to the

two comparisons of Eq. 1). For example, if the stripes are vertical (as
in Figure 1b), a join result is reported only ifmax{r .xl , s .xl } � T .xl .

2.3 Choosing the Sweeping Axis
When applying plane sweep for a tile (or stripe) T , we have to
decide along which axis we will sort the rectangles and then sweep
them. We devise a model which, given the sets of rectangles RT ,
ST inside a tile T , determines the sweeping axis to be used. The
key idea is to estimate, for each axis, how many candidate pairs of
rectangles from RT ⇥ ST intersect along this axis. For this purpose,
we compute histogram statistics. In speci�c, we sub-divide the x and
� projections of the tile T into a prede�ned number of partitions k .
Then, we count howmany rectangles from R and howmany from S ,
x-intersect each x-division of the tile; the procedure for � partitions
is symmetric. In this manner, we construct four histogramsHx

R ,H
�
R ,

Hx
S , H

�
S of k buckets each. The number IxT of rectangles in RT ⇥ ST

that x-intersect can then be approximated by accumulating the
product of the corresponding histogram buckets, i.e.,

IxT =
k’
i=0

{Hx
R [i] · H

x
S [i]} (2)

The smallest of IxT and I�T determines the chosen sweeping axis (i.e.,
x or �). For large tiles (compared to the size of the rectangles), we
set k = 1000, while for small tiles k is the number of times the tile’s
extent is larger than the average rectangle extent. In practice, using
all rectangles of T in the histogram construction is too expensive.
So, we use a sample of rectangles from RT and ST for this purpose.
Speci�cally, for every � rectangles that are assigned to tileT , we use
one for histogram construction. We set � = 100 by default because
it can produce good enough estimates at a low overhead.

Application to 1D partitioning. Our model can be straightfor-
wardly applied in case of a 1D partitioning; histogram statistics are
now computed for the contents of the vertical or horizontal stripes
and the entire domain on the other dimension.

3 PARALLEL PROCESSING
We parallelize evaluation by splitting its partitioning and joining
phases into parallel and independent tasks, while trying tominimize
the synchronization requirements between the threads. The steps
for parallelizing the spatial join tom threads are as follows:

Partitioning phase
(1) Determine a division of each input R and S intom equi-sized

parts arbitrarily.
(2) Initiatem threads. Thread i reads the i-th part of input R and

counts how many rectangles should be assigned to each of the
space partitions (tiles or stripes). Thread i repeats the same
process for the i-th part of input S . Let |RiT |, |S

i
T | be the numbers

of rectangles counted by thread i for tileT and R, S , respectively.
(3) Compute |RT | =

Õm
i |RiT | and |ST | =

Õm
i |SiT | for each tile T .

Allocate two memory segments for |RT | and |ST | rectangles of
each partition T .

(4) Initiatem threads. Thread i reads the i-th parts of inputs R and S
and partitions them. The memory allocated for each of |RT | and
|ST | is logically divided intom segments based on the |RiT |’s
and |SiT |’s. Hence, thread 1 will write to the �rst |R1T | positions

Parallel In-Memory Evaluation of Spatial Joins SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

Table 1: Datasets used in the experiments
source dataset alias cardinality avg. x -extent avg. �-extent

Tiger 2015

AREAWATER T 2 2.3M 0.000007230 0.000022958
EDGES T 4 70M 0.000006103 0.00001982

LINEARWATER T 5 5.8M 0.000022243 0.000073195
ROADS T 8 20M 0.000012538 0.000040672

OSM

Buildings O3 115M 0.00000056 0.000000782
Lakes O5 8.4M 0.000021017 0.000028236
Parks O6 10M 0.000016544 0.000022294
Roads O9 72M 0.000010549 0.000016281

of |RT |, thread 2 to the next |R2T | positions, etc. After all threads
complete partitioning, we will have the entire set of rectangles
that fall in each tile continuously in memory.

Joining phase
(5) Construct two sorting tasks for each tile T (one for RT and one

for ST). Assign the sorting tasks to them threads.
(6) Construct a join task for each tileT (one for RT and one for ST).

Assign the join tasks to them threads.

Step 2 is applied to make proper memory allocation and prevent
expensive dynamic allocations. It also facilitates the output of par-
allel partitioning for each tileT to be continuous in memory during
Step 4. When the model of Section 2.3 is used, the histograms are
computed while loading input data (i.e., in either of Steps 2 and 4).

4 EXPERIMENTAL ANALYSIS
4.1 Setup
We experimented with Tiger 2015 and OpenStreetMap (OSM)
datasets from [6].1 For each dataset, we computed the MBRs of
the objects and came up with a corresponding collection of rectan-
gles. Table 1 details the datasets we used. Dataset cardinality ranges
from 2.3M to 115M objects and we tested joins having inputs from
the same collection, with similar or various scales. The last two
columns of the tables are the relative (over the entire space) average
length of the rectangle projections at each axis.

We implemented the spatial join algorithm (all di�erent versions)
in C++ and compiled it using gcc (v4.8.5). For multi-threading, we
used OpenMP. All experiments were run on amachine with 384 GBs
of RAM and a dual 10-core Intel(R) Xeon(R) CPU E5-2630 v4 clocked
at 2.20GHz running CentOS Linux 7.3.1611; with hyper-threading,
we were able to run up to 40 threads. The reported runtimes include
the costs of partitioning both datasets and then joining them. Due
to lack of space, our full set of experiments can be found in [10].

4.2 Selecting the Sweeping Axis
We �rst test the e�ect that the sweeping axis selection (either x
or �) has on the performance of the algorithm. For this purpose,
we chose not to partition the data, but ran the single-threaded
plane-sweep join from [4] in the entire dataspace (i.e., modeling
the case of a single tile). Table 2 reports the execution times per
query. We observe that sweeping along the wrong axis may even
double the cost of the join. The last column of the table reports
the result of running our model (Eq. 2). Our model was able to
accurately determine the proper sweeping axis in all cases. Note
that the cost of this decision-making process is negligible compared
to the partitioning and joining cost; even for the largest queries,
our model needs less than 10 milliseconds.
1http://spatialhadoop.cs.umn.edu/datasets.html

Table 2: Sweeping axis e�ect; queries ordered by runtime

query sweeping axis adaptive model
x � Ix I�

T 2 ./ T 5 8.94s 16.96s 8,376 19,232
T 2 ./ T 8 24.52s 40.72s 8,895 18,660
O5 ./ O6 24.92s 66.06s 2,692 12,279
O6 ./ O9 216.88s 444.19s 3,989 11,510
T 4 ./ T 8 674.50s 1,360.92s 8,135 19,406
O9 ./ O3 926.14s 1,681.30s 4,535 11,529

4.3 Evaluation of Partitioning
Next, we investigate the impact of partitioning to the performance
of the algorithm.We tune 1D and 2D-based PBSM and then compare
the two partitioning approaches to each other.

Tuning 1D Partitioning. Figure 2 reports the cost of two spatial
join queries while varying the number K of (uniform) 1D partitions.
We tested all combinations of partitioning and sweeping axes. For
example, x� denotes partitioning along the x axis (to vertical stripes)
and sweeping along the � axis. Note that if the sweeping axis is
the same as the partitioning axis (i.e., cases xx and ��), the join
cost does not drop when we increase the number of partitions K .
This is expected because, regardless the number of partitions, case
xx or �� is equivalent to having no partitions at all and sweeping
along the x or � axis in the entire space. When K is too large, the
costs of xx and �� increase because the partitions become very
narrow and replication becomes excessive. On the other hand, the
performance of cases x� and �x improves with K and, after some
point, i.e.,K = 2,000, they converge to the same (very low) cost. The
costs of both x� and �x start to increase again when K > 10,000,
at which point we start having signi�cant replication (observe the
average x- and �-extent statistics in Table 1). Figure 3 breaks down
the total cost to partitioning and joining for the x� case. The joining
cost includes the cost of sorting the partitions. As expected, the cost
of partitioning increases with K and the joining cost drops. After
K = 10,000 partitioning becomes very expensive without o�ering
improvement in the join. The lowest runtime is achieved when the
x-extent of the partitions (i.e., the narrow side of the stripes) is
about 10 times larger than the average x-extent of the rectangles.

Tuning 2DPartitioning.We vary the granularityK⇥K of the grid
and measure for each value of K the runtime cost of the algorithm,
when the sweeping axis is always set to x , always set to �, or when
our adaptive model is used to select the sweeping axis at each tile
(which could be di�erent at di�erent tiles). Figure 4 depicts the
performance of the three join variants. Similarly to 1D partitioning,
when the number of partitions is small K 20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500. Figure 5 shows
the cost breakdown for the partitioning and joining phases of the
2D spatial join, when our model is used for picking the sweeping
axis x . The observations are similar the corresponding ones for
1D partitioning. The best grid con�guration is around K = 2,000,
which is consistent with the best option in 1D partitioning.

1D vs. 2D Partitioning. There are two main �ndings from the
PBSM tuning experiments. First, the rule of the thumb is to select
K (in both 1D and 2D partitioning) such that the extents of the
resulting partitions are about one order ofmagnitude larger than the
extents of the rectangles (in one or both dimensions, respectively).

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]
partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e
[s

ec
s]

partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

��

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e
[s

ec
s]

partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

x�

 0

 5

 10

 15

 20

 25

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

y-y
x-x
x-y
y-x
x-a
y-a

 0

 10

 20

 30

 40

 50

 60

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

 0
 100
 200
 300
 400
 500
 600
 700

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 6: Tuning 1D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 7: Tuning 1D partitioning: time breakdown

tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K 20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

�x

 0

 5

 10

 15

 20

 25

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

y-y
x-y
y-x
x-a
y-a

 0

 10

 20

 30

 40

 50

 60

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

 0
 100
 200
 300
 400
 500
 600
 700

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 6: Tuning 1D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 7: Tuning 1D partitioning: time breakdown

tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K 20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

 0

 5

 10

 15

 20

 25

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K

 0
 100
 200
 300
 400
 500
 600
 700

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]
partitions K

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e
[s

ec
s]

partitions K

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e
[s

ec
s]

partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

�

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]
partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e
[s

ec
s]

partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

adaptive model

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e
[s

ec
s]

partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

partitions K per dimension

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e
[s

ec
s]

partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e
[s

ec
s]

partitions K per dimension

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

http://arxiv.org/abs/1908.11740

	Abstract
	1 Introduction
	2 Tuning PBSM
	2.1 One-dimensional Partitioning
	2.2 Duplicate Elimination
	2.3 Choosing the Sweeping Axis

	3 Parallel Processing
	4 Experimental Analysis
	4.1 Setup
	4.2 Selecting the Sweeping Axis
	4.3 Evaluation of Partitioning
	4.4 Parallel Evaluation

	References

